Principal Component Analysis With Fuzzy Elastic Net for Feature Selection

IF 10.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Fuzzy Systems Pub Date : 2024-12-02 DOI:10.1109/TFUZZ.2024.3466926
Yunlong Gao;Qinting Wu;Zhenghong Xu;Chao Cao;Jinyan Pan;Guifang Shao;Feiping Nie;Qingyuan Zhu
{"title":"Principal Component Analysis With Fuzzy Elastic Net for Feature Selection","authors":"Yunlong Gao;Qinting Wu;Zhenghong Xu;Chao Cao;Jinyan Pan;Guifang Shao;Feiping Nie;Qingyuan Zhu","doi":"10.1109/TFUZZ.2024.3466926","DOIUrl":null,"url":null,"abstract":"Feature selection serves as a fundamental technique in machine learning and data analysis, playing a crucial role in extracting valuable features from large-scale and high-dimensional datasets that may contain irrelevant features. To enhance the performance of feature selection, regularizers like \n<inline-formula><tex-math>${\\ell _{1}}$</tex-math></inline-formula>\n-norm or \n<inline-formula><tex-math>${\\ell _{2,1}}$</tex-math></inline-formula>\n-norm are commonly utilized to encourage sparsity. Nonetheless, these traditional regularization techniques encounter certain challenges. When correlations exist among features, the sparsity-driven regularization can unfairly diminish weights of correlated features to zero, thus ignoring the feature correlations and lacking group sparsity properties. While a straightforward combination of \n<inline-formula><tex-math>${\\ell _{1}}$</tex-math></inline-formula>\n-norm and \n<inline-formula><tex-math>${\\ell _{2}}$</tex-math></inline-formula>\n-norm can uncover feature correlations, it lacks adaptability and effectively balancing sparsity and correlation. To address these challenges, we introduce a novel matrix-based regularization term, called a fuzzy elastic net, in the unsupervised feature selection model. Our model is founded on principal component analysis, a well-established dimensionality reduction technique adept at finding subspaces that retain most information from raw data. The model is enhanced by a fuzzy elastic net, which promotes group or sparsity properties through adaptive parameter tuning. The new regularization term introduces a flexible fuzzy weighted scheme combining the \n<inline-formula><tex-math>${\\ell _{2,2}}$</tex-math></inline-formula>\n-norm and \n<inline-formula><tex-math>${\\ell _{2,p}}$</tex-math></inline-formula>\n-norm (\n<inline-formula><tex-math>$0&lt; p\\leq 1$</tex-math></inline-formula>\n). This approach allows adaptive adjustment based on data characteristics, offering a tunable balance between selecting discriminative features and identifying correlated ones. Consequently, this regularization term equips the model to handle diverse data analysis tasks flexibly, thereby enhancing adaptability and generalization performance. Furthermore, we propose an efficient optimization strategy to solve this model. Extensive experiments conducted on UCI datasets and real-world datasets demonstrate the effectiveness and efficiency of our proposed method.","PeriodicalId":13212,"journal":{"name":"IEEE Transactions on Fuzzy Systems","volume":"32 12","pages":"6878-6890"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10772384/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Feature selection serves as a fundamental technique in machine learning and data analysis, playing a crucial role in extracting valuable features from large-scale and high-dimensional datasets that may contain irrelevant features. To enhance the performance of feature selection, regularizers like ${\ell _{1}}$ -norm or ${\ell _{2,1}}$ -norm are commonly utilized to encourage sparsity. Nonetheless, these traditional regularization techniques encounter certain challenges. When correlations exist among features, the sparsity-driven regularization can unfairly diminish weights of correlated features to zero, thus ignoring the feature correlations and lacking group sparsity properties. While a straightforward combination of ${\ell _{1}}$ -norm and ${\ell _{2}}$ -norm can uncover feature correlations, it lacks adaptability and effectively balancing sparsity and correlation. To address these challenges, we introduce a novel matrix-based regularization term, called a fuzzy elastic net, in the unsupervised feature selection model. Our model is founded on principal component analysis, a well-established dimensionality reduction technique adept at finding subspaces that retain most information from raw data. The model is enhanced by a fuzzy elastic net, which promotes group or sparsity properties through adaptive parameter tuning. The new regularization term introduces a flexible fuzzy weighted scheme combining the ${\ell _{2,2}}$ -norm and ${\ell _{2,p}}$ -norm ( $0< p\leq 1$ ). This approach allows adaptive adjustment based on data characteristics, offering a tunable balance between selecting discriminative features and identifying correlated ones. Consequently, this regularization term equips the model to handle diverse data analysis tasks flexibly, thereby enhancing adaptability and generalization performance. Furthermore, we propose an efficient optimization strategy to solve this model. Extensive experiments conducted on UCI datasets and real-world datasets demonstrate the effectiveness and efficiency of our proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊弹性网的主成分分析特征选择
特征选择是机器学习和数据分析的一项基本技术,在从可能包含不相关特征的大规模和高维数据集中提取有价值的特征方面起着至关重要的作用。为了增强特征选择的性能,通常使用${\ell _{1}}$ -norm或${\ell _{2,1}}$ -norm等正则化器来鼓励稀疏性。然而,这些传统的正则化技术遇到了一些挑战。当特征之间存在相关性时,稀疏性驱动的正则化会不公平地将相关特征的权重降低到零,从而忽略了特征的相关性,缺乏群稀疏性。虽然${\ell _{1}}$ -norm和${\ell _{2}}$ -norm的直接组合可以揭示特征相关性,但它缺乏适应性,无法有效地平衡稀疏性和相关性。为了解决这些挑战,我们在无监督特征选择模型中引入了一种新的基于矩阵的正则化项,称为模糊弹性网。我们的模型建立在主成分分析的基础上,主成分分析是一种成熟的降维技术,擅长于从原始数据中找到保留大部分信息的子空间。采用模糊弹性网络增强模型,通过自适应参数调整提高模型的群或稀疏性。新的正则化项引入了一种灵活的结合${\ell _{2,2}}$ -范数和${\ell _{2,p}}$ -范数($0< p\leq 1$)的模糊加权方案。这种方法允许基于数据特征的自适应调整,在选择判别特征和识别相关特征之间提供可调的平衡。因此,该正则化项使模型能够灵活地处理各种数据分析任务,从而增强了自适应能力和泛化性能。此外,我们还提出了一种有效的优化策略来求解该模型。在UCI数据集和实际数据集上进行的大量实验证明了我们提出的方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Fuzzy Systems
IEEE Transactions on Fuzzy Systems 工程技术-工程:电子与电气
CiteScore
20.50
自引率
13.40%
发文量
517
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Fuzzy Systems is a scholarly journal that focuses on the theory, design, and application of fuzzy systems. It aims to publish high-quality technical papers that contribute significant technical knowledge and exploratory developments in the field of fuzzy systems. The journal particularly emphasizes engineering systems and scientific applications. In addition to research articles, the Transactions also includes a letters section featuring current information, comments, and rebuttals related to published papers.
期刊最新文献
Sliding Mode Learning Control for Interconnected Nonlinear Systems via Data-Driven Self-Triggered Fuzzy Approach Hierarchical Fuzzy Topological System for High-Dimensional Data Regression Problems ODMGIS: An Outlier Detection Method Based on Multi-Granularity Information Sets Distributed Estimator-Based Fuzzy Containment Control for Nonlinear Multi-Agent Systems With Deferred Constraints Double-Layer Fuzzy Neural Network Based Optimal Control for Wastewater Treatment Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1