Artificial intelligence-aided data mining of medical records for cancer detection and screening

Amalie Dahl Haue, Jessica Xin Hjaltelin, Peter Christoffer Holm, Davide Placido, S⊘ren Brunak
{"title":"Artificial intelligence-aided data mining of medical records for cancer detection and screening","authors":"Amalie Dahl Haue, Jessica Xin Hjaltelin, Peter Christoffer Holm, Davide Placido, S⊘ren Brunak","doi":"10.1016/s1470-2045(24)00277-8","DOIUrl":null,"url":null,"abstract":"The application of artificial intelligence methods to electronic patient records paves the way for large-scale analysis of multimodal data. Such population-wide data describing deep phenotypes composed of thousands of features are now being leveraged to create data-driven algorithms, which in turn has led to improved methods for early cancer detection and screening. Remaining challenges include establishment of infrastructures for prospective testing of such methods, ways to assess biases given the data, and gathering of sufficiently large and diverse datasets that reflect disease heterogeneities across populations. This Review provides an overview of artificial intelligence methods designed to detect cancer early, including key aspects of concern (eg, the problem of data drift—when the underlying health-care data change over time), ethical aspects, and discrepancies between access to cancer screening in high-income countries versus low-income and middle-income countries.","PeriodicalId":22865,"journal":{"name":"The Lancet Oncology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/s1470-2045(24)00277-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The application of artificial intelligence methods to electronic patient records paves the way for large-scale analysis of multimodal data. Such population-wide data describing deep phenotypes composed of thousands of features are now being leveraged to create data-driven algorithms, which in turn has led to improved methods for early cancer detection and screening. Remaining challenges include establishment of infrastructures for prospective testing of such methods, ways to assess biases given the data, and gathering of sufficiently large and diverse datasets that reflect disease heterogeneities across populations. This Review provides an overview of artificial intelligence methods designed to detect cancer early, including key aspects of concern (eg, the problem of data drift—when the underlying health-care data change over time), ethical aspects, and discrepancies between access to cancer screening in high-income countries versus low-income and middle-income countries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于癌症检测和筛查的医疗记录人工智能辅助数据挖掘
人工智能方法在电子病历中的应用为多模态数据的大规模分析铺平了道路。这种描述由数千个特征组成的深层表型的人口范围内的数据现在被用来创建数据驱动的算法,这反过来又导致了早期癌症检测和筛查方法的改进。其余的挑战包括建立对这些方法进行前瞻性测试的基础设施,评估数据偏差的方法,以及收集反映人群疾病异质性的足够大和多样化的数据集。本综述概述了旨在早期发现癌症的人工智能方法,包括关注的关键方面(例如,数据漂移问题——当基础卫生保健数据随时间变化时)、伦理方面以及高收入国家与低收入和中等收入国家在获得癌症筛查方面的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Texan judge blocks US FDA changes on cigarette packaging India is boosting vaccination efforts to eradicate cervical cancer Tiragolumab in combination with atezolizumab and bevacizumab in patients with unresectable, locally advanced or metastatic hepatocellular carcinoma (MORPHEUS-Liver): a randomised, open-label, phase 1b–2, study Insights into the future of first-line advanced hepatocellular carcinoma treatment Thermal ablation versus surgical resection of small-size colorectal liver metastases (COLLISION): an international, randomised, controlled, phase 3 non-inferiority trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1