An Electrochemical Pipette for the Study of Drug Metabolite

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2024-12-03 DOI:10.1021/acs.analchem.4c04712
Nastaran Nikzad, Buwanila T. Punchihewa, Vidit Minda, William G. Gutheil, Mohammad Rafiee
{"title":"An Electrochemical Pipette for the Study of Drug Metabolite","authors":"Nastaran Nikzad, Buwanila T. Punchihewa, Vidit Minda, William G. Gutheil, Mohammad Rafiee","doi":"10.1021/acs.analchem.4c04712","DOIUrl":null,"url":null,"abstract":"Electrochemistry offers an effective means of mimicking enzymatic metabolic pathways, particularly the oxidative pathways catalyzed by the cytochrome P450 superfamily. The electrochemical generation and identification of metabolites are time-sensitive, necessitating adjustable cell designs for an accurate mechanistic interpretation. We present a thin-layer electrode (TLE) that addresses the needs of both the analytical and synthetic electrochemical generation of drug metabolites. The TLE’s ability to conduct experiments on a minute-to-hour time scale allows for detailed observation of reaction mechanisms for metabolites not easily identified by traditional methods. The utility of the TLE for drug metabolites was benchmarked for electrochemical oxidation of acetaminophen, acebutolol, and 2-acetyl-4-butyramidophenol, known to produce quinone imine metabolites, i.e., NAPQI, upon oxidation. When combined with a microelectrode (μE), the TLE enables probing of the concentration profiles for metabolic oxidation of these drugs. The micromole scale and pipette-type structure of the TLE facilitate comprehensive structural elucidation of intermediates and products using chromatographic and spectroscopic techniques.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"8 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04712","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemistry offers an effective means of mimicking enzymatic metabolic pathways, particularly the oxidative pathways catalyzed by the cytochrome P450 superfamily. The electrochemical generation and identification of metabolites are time-sensitive, necessitating adjustable cell designs for an accurate mechanistic interpretation. We present a thin-layer electrode (TLE) that addresses the needs of both the analytical and synthetic electrochemical generation of drug metabolites. The TLE’s ability to conduct experiments on a minute-to-hour time scale allows for detailed observation of reaction mechanisms for metabolites not easily identified by traditional methods. The utility of the TLE for drug metabolites was benchmarked for electrochemical oxidation of acetaminophen, acebutolol, and 2-acetyl-4-butyramidophenol, known to produce quinone imine metabolites, i.e., NAPQI, upon oxidation. When combined with a microelectrode (μE), the TLE enables probing of the concentration profiles for metabolic oxidation of these drugs. The micromole scale and pipette-type structure of the TLE facilitate comprehensive structural elucidation of intermediates and products using chromatographic and spectroscopic techniques.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Measurement of Covalent Bond Formation in Light-Curing Hydrogels Predicts Physical Stability under Flow An Electrochemical Pipette for the Study of Drug Metabolite Determination of the pKa and Concentration of NMR-Invisible Molecules and Sites Using NMR Spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1