Effect of Size-Controlled Nanofluid on Mechanical Properties, Microstructure, and Rheological Behavior of Cement Slurry for Oil Well Cementing

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-11-19 DOI:10.1021/acsomega.4c0787110.1021/acsomega.4c07871
Ramaswamy Gautam, Abhinav Hazra, Prashant Faujdar, Suvendu Sen, Bibhash Chandra Mishra, Tushar Sharma* and Shailesh Kumar, 
{"title":"Effect of Size-Controlled Nanofluid on Mechanical Properties, Microstructure, and Rheological Behavior of Cement Slurry for Oil Well Cementing","authors":"Ramaswamy Gautam,&nbsp;Abhinav Hazra,&nbsp;Prashant Faujdar,&nbsp;Suvendu Sen,&nbsp;Bibhash Chandra Mishra,&nbsp;Tushar Sharma* and Shailesh Kumar,&nbsp;","doi":"10.1021/acsomega.4c0787110.1021/acsomega.4c07871","DOIUrl":null,"url":null,"abstract":"<p >The optimal design of cement slurry by balancing various cement additives and cement is critical for effective oil well cementation job. However, given adverse circumstances of application, existing additives may not be sufficient to perform suitably in challenging conditions, leading to premature cement hydration, formation of microcracks, and gas channeling pathways. Thus, this study explores the use of a single-step silica nanofluid (NP size: 5–10, 90–100, and 250–300 nm and concentration: 1, 3, and 5 wt %) as an additive and explores its effect on thickening time, fluid loss, and rheological behavior of class G cement slurry at high-pressure and high-temperature (HPHT) conditions (135 °C and 3625 psi). The improvement in thickening time, fluid loss, and rheology of conventional slurry was greater for low NP size than the nanofluid of high NP size: the nanofluid size, e.g., 5–10 nm, and concentration (1 wt %) were found to accelerate the thickening time by 30–40% while reducing fluid loss from 38 mL (no silica, slurry CS) to 30 mL (with silica, slurry C1). The rheological behavior was studied via shear (viscosity) and dynamic (elastic moduli, <i>G</i>′) modes to evaluate the viscosity, hysteresis, and elastic response of slurry with and without nanofluid. The inclusion of nanofluid slightly reduced the slurry viscosity; however, all slurries exhibited shear thinning with superior fitting with the power law model. As compared to slurry CS, hysteresis of slurry C1 was least dependent on shear deformation, and thus, it showed that it almost matched viscosity profiles during loading and unloading cycles. The addition of silica was found to maintain the original properties of cement slurry, establishing that cement had not agglomerated, and no sedimentation was observed even at shear rates of 1000 s<sup>–1</sup>. The results of this study greatly promote the use of silica nanofluid as an important additive in class G cement for cementation operations, which is unlikely with a two-step nanofluid where nanoparticles are expensive, and upon mixing, they tend to agglomerate and make large size clusters.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 48","pages":"47739–47755 47739–47755"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c07871","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c07871","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The optimal design of cement slurry by balancing various cement additives and cement is critical for effective oil well cementation job. However, given adverse circumstances of application, existing additives may not be sufficient to perform suitably in challenging conditions, leading to premature cement hydration, formation of microcracks, and gas channeling pathways. Thus, this study explores the use of a single-step silica nanofluid (NP size: 5–10, 90–100, and 250–300 nm and concentration: 1, 3, and 5 wt %) as an additive and explores its effect on thickening time, fluid loss, and rheological behavior of class G cement slurry at high-pressure and high-temperature (HPHT) conditions (135 °C and 3625 psi). The improvement in thickening time, fluid loss, and rheology of conventional slurry was greater for low NP size than the nanofluid of high NP size: the nanofluid size, e.g., 5–10 nm, and concentration (1 wt %) were found to accelerate the thickening time by 30–40% while reducing fluid loss from 38 mL (no silica, slurry CS) to 30 mL (with silica, slurry C1). The rheological behavior was studied via shear (viscosity) and dynamic (elastic moduli, G′) modes to evaluate the viscosity, hysteresis, and elastic response of slurry with and without nanofluid. The inclusion of nanofluid slightly reduced the slurry viscosity; however, all slurries exhibited shear thinning with superior fitting with the power law model. As compared to slurry CS, hysteresis of slurry C1 was least dependent on shear deformation, and thus, it showed that it almost matched viscosity profiles during loading and unloading cycles. The addition of silica was found to maintain the original properties of cement slurry, establishing that cement had not agglomerated, and no sedimentation was observed even at shear rates of 1000 s–1. The results of this study greatly promote the use of silica nanofluid as an important additive in class G cement for cementation operations, which is unlikely with a two-step nanofluid where nanoparticles are expensive, and upon mixing, they tend to agglomerate and make large size clusters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Tumor-Targeted Magnetic Micelles for Magnetic Resonance Imaging, Drug Delivery, and Overcoming Multidrug Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1