Clean and Efficient Green Protocol of N,N′-Bis(2-(arylazo)-2-(aroyl)vinyl)ethane-1,2-diamines in Aqueous Medium without Catalyst: Synthesis and Photophysical Characterization

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-11-20 DOI:10.1021/acsomega.4c0625010.1021/acsomega.4c06250
Abdulrahman M. Alazemi*, Kamal M. Dawood*, Hamad M. Al-Matar and Wael M. Tohamy, 
{"title":"Clean and Efficient Green Protocol of N,N′-Bis(2-(arylazo)-2-(aroyl)vinyl)ethane-1,2-diamines in Aqueous Medium without Catalyst: Synthesis and Photophysical Characterization","authors":"Abdulrahman M. Alazemi*,&nbsp;Kamal M. Dawood*,&nbsp;Hamad M. Al-Matar and Wael M. Tohamy,&nbsp;","doi":"10.1021/acsomega.4c0625010.1021/acsomega.4c06250","DOIUrl":null,"url":null,"abstract":"<p >An interesting platform for the construction of novel <i>N</i>,<i>N</i>′-bis(2-(arylazo)-2-(aroyl)vinyl)ethane-1,2-diamines is reported in this work. These bis-arylazo compounds were assembled based on the reaction of ethylenediamine with various 2-arylhydrazono-3-oxopropanals in aqueous conditions under both conventional stirring and microwave conditions at ambient temperature. The factors affecting the optimization conditions were intensively practiced. The structures of the new products were established from their spectroscopic analyses and X-ray single crystals. The photophysical behavior of the bis-arylazo derivatives was examined. The UV–vis spectra showed maximum absorption band in the range of 348–383 nm with molar extinction coefficients ranging from 0.89 × 10<sup>4</sup> to 4.02 × 10<sup>4</sup> M<sup>–1</sup> cm<sup>–1</sup>. The highest molar absorptivity coefficient (∼45 × 10<sup>3</sup> M<sup>–1</sup> cm<sup>–1</sup>) was observed in CHCl<sub>3</sub> solvent. The fluorescence properties showed that some compounds were interesting fluorophore materials with high Stokes shifts. The photoluminescence study of some compounds was promising, with maximal emission peaks ranging between 417–436 nm.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 48","pages":"47532–47542 47532–47542"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c06250","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c06250","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An interesting platform for the construction of novel N,N′-bis(2-(arylazo)-2-(aroyl)vinyl)ethane-1,2-diamines is reported in this work. These bis-arylazo compounds were assembled based on the reaction of ethylenediamine with various 2-arylhydrazono-3-oxopropanals in aqueous conditions under both conventional stirring and microwave conditions at ambient temperature. The factors affecting the optimization conditions were intensively practiced. The structures of the new products were established from their spectroscopic analyses and X-ray single crystals. The photophysical behavior of the bis-arylazo derivatives was examined. The UV–vis spectra showed maximum absorption band in the range of 348–383 nm with molar extinction coefficients ranging from 0.89 × 104 to 4.02 × 104 M–1 cm–1. The highest molar absorptivity coefficient (∼45 × 103 M–1 cm–1) was observed in CHCl3 solvent. The fluorescence properties showed that some compounds were interesting fluorophore materials with high Stokes shifts. The photoluminescence study of some compounds was promising, with maximal emission peaks ranging between 417–436 nm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Tumor-Targeted Magnetic Micelles for Magnetic Resonance Imaging, Drug Delivery, and Overcoming Multidrug Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1