Viktoriia Savchuk*, Ruizheng Wang, Lyle Small and Anatoliy Pinchuk,
{"title":"Synergistic Effect in Hybrid Plasmonic Conjugates for Photothermal Applications","authors":"Viktoriia Savchuk*, Ruizheng Wang, Lyle Small and Anatoliy Pinchuk, ","doi":"10.1021/acsomega.4c0506810.1021/acsomega.4c05068","DOIUrl":null,"url":null,"abstract":"<p >Photothermal conversion efficiency (η) plays a crucial role in selecting suitable gold nanoparticles for photothermal therapeutic applications. The photothermal efficiency depends on the material used for the nanoparticles as well as their various parameters, such as size and shape. By maximizing the light-to-heat conversion efficiency (η), one can reduce the concentration of nanoparticle drugs for photothermal cancer treatment and apply lower laser power to irradiate the tumor. In our study, we explored a new hybrid plasmonic conjugate for theranostic (therapy + diagnostic) applications. We conjugated PEG-functionalized 20 nm gold nanospheres with cyanine IR dyes via a PEG linker. The resulting conjugates exhibited significantly enhanced photothermal properties compared with bare nanoparticles. We experimentally showed that a proposed new hybrid plasmonic conjugate can achieve almost four times larger conversion efficiency (47.7%) than 20 nm gold nanospheres (12%). The enhanced photothermal properties of these gold conjugates can provide the required temperature for the photothermal treatment of cancer cells with lower concentrations of gold nanoparticles injected in the body as well as with lower applied incident laser power density. Moreover, the improved photothermal properties of the conjugates can be explained by a synergistic effect that has not been observed in the past. This effect results from the coupling between the metal nanosphere and the organic dye.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 48","pages":"47436–47441 47436–47441"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c05068","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c05068","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photothermal conversion efficiency (η) plays a crucial role in selecting suitable gold nanoparticles for photothermal therapeutic applications. The photothermal efficiency depends on the material used for the nanoparticles as well as their various parameters, such as size and shape. By maximizing the light-to-heat conversion efficiency (η), one can reduce the concentration of nanoparticle drugs for photothermal cancer treatment and apply lower laser power to irradiate the tumor. In our study, we explored a new hybrid plasmonic conjugate for theranostic (therapy + diagnostic) applications. We conjugated PEG-functionalized 20 nm gold nanospheres with cyanine IR dyes via a PEG linker. The resulting conjugates exhibited significantly enhanced photothermal properties compared with bare nanoparticles. We experimentally showed that a proposed new hybrid plasmonic conjugate can achieve almost four times larger conversion efficiency (47.7%) than 20 nm gold nanospheres (12%). The enhanced photothermal properties of these gold conjugates can provide the required temperature for the photothermal treatment of cancer cells with lower concentrations of gold nanoparticles injected in the body as well as with lower applied incident laser power density. Moreover, the improved photothermal properties of the conjugates can be explained by a synergistic effect that has not been observed in the past. This effect results from the coupling between the metal nanosphere and the organic dye.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.