Metal–Organic Frameworks (MOFs) and Their Composites for Oil/Water Separation

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-11-19 DOI:10.1021/acsomega.4c0791110.1021/acsomega.4c07911
Abdullah M. Abudayyeh, Lila A.M. Mahmoud, Valeska P. Ting and Sanjit Nayak*, 
{"title":"Metal–Organic Frameworks (MOFs) and Their Composites for Oil/Water Separation","authors":"Abdullah M. Abudayyeh,&nbsp;Lila A.M. Mahmoud,&nbsp;Valeska P. Ting and Sanjit Nayak*,&nbsp;","doi":"10.1021/acsomega.4c0791110.1021/acsomega.4c07911","DOIUrl":null,"url":null,"abstract":"<p >Contamination of water by oil-based pollutants is a major environmental problem because of its harmful impact on human life, marine life, and the environment. As a result, a wide range of materials are being investigated for the effective separation of oil from water. Among these materials, metal–organic frameworks (MOFs) and their composites have emerged as excellent candidates due to their ultraporous structures with high surface areas that can be engineered to achieve high selectivity for one of the phases in an oil/water mixture for efficient water filtration. However, the often nanocrystalline/microcrystalline form of MOFs combined with challenges of processability and poor stability in water has largely limited their use in industrial and environmental applications. Hence, considerable efforts have recently been made to improve the performance and stability of MOFs by introducing hydrophobic functional groups into the organic linkers and fabricating polymer-MOF composites to increase their stability and recyclability. In addition, the use of biobased or biodegradable MOF composites can be particularly useful for applications in natural environments. This Review presents recent advances in the field of hydrophobic MOFs and MOF-based composites studied for the separation of oil from oil/water mixtures, with an account of future challenges in this area.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 48","pages":"47374–47394 47374–47394"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c07911","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c07911","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Contamination of water by oil-based pollutants is a major environmental problem because of its harmful impact on human life, marine life, and the environment. As a result, a wide range of materials are being investigated for the effective separation of oil from water. Among these materials, metal–organic frameworks (MOFs) and their composites have emerged as excellent candidates due to their ultraporous structures with high surface areas that can be engineered to achieve high selectivity for one of the phases in an oil/water mixture for efficient water filtration. However, the often nanocrystalline/microcrystalline form of MOFs combined with challenges of processability and poor stability in water has largely limited their use in industrial and environmental applications. Hence, considerable efforts have recently been made to improve the performance and stability of MOFs by introducing hydrophobic functional groups into the organic linkers and fabricating polymer-MOF composites to increase their stability and recyclability. In addition, the use of biobased or biodegradable MOF composites can be particularly useful for applications in natural environments. This Review presents recent advances in the field of hydrophobic MOFs and MOF-based composites studied for the separation of oil from oil/water mixtures, with an account of future challenges in this area.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Tumor-Targeted Magnetic Micelles for Magnetic Resonance Imaging, Drug Delivery, and Overcoming Multidrug Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1