Kinetics and Optimization Studies of Controlled 5-Fluorouracil Release from Graphene Oxide Incorporated Vegetable Oil-Based Polyurethane Composite Film
Ebru Kahraman*, Tugba Hayri-Senel and Gulhayat Nasun-Saygili,
{"title":"Kinetics and Optimization Studies of Controlled 5-Fluorouracil Release from Graphene Oxide Incorporated Vegetable Oil-Based Polyurethane Composite Film","authors":"Ebru Kahraman*, Tugba Hayri-Senel and Gulhayat Nasun-Saygili, ","doi":"10.1021/acsomega.4c0224710.1021/acsomega.4c02247","DOIUrl":null,"url":null,"abstract":"<p >The current study focuses on investigating the potential of produced graphene oxide (GO)/oil-based polyurethane composite films as a drug carrier for 5-fluorouracil (5-FU). Polyurethane was synthesized starting from blends of castor oil and sunflower oil-based glyceride, followed by GO and 5-FU anticancer drug bearing film production by solution casting. GO/PU composite film samples were characterized by FTIR, TGA and SEM analysis, confirming the PU production and distribution of 5-FU drug at a homogeneous level in GO/PU films. Experimental design studies were carried out to provide insight into the influence of GO incorporation, the amount of loaded drug, and the release medium pH value on 5-FU release behavior. The amount of 5-FU delivered from GO/PU composites displayed a tendency to increase at high GO ratios and high pH values, with the obtained maximum ratio of 91.4%. From release kinetics studies, the pH-sensitive behavior of GO/PU composites was observed following a Higuchi or zero-order kinetic model depending on the GO ratio, indicating a sustained release of the drug. The in vitro cytotoxicity effect of GO/PU film through 5-FU drug release was confirmed against the MCF-7 human breast cancer cell line, while good biocompatibility of the drug-free GO/PU film against the L-929 mouse fibroblast cell line was confirmed via MTT assay test. Overall, the findings support that produced GO/PU composites hold potential for clinical drug delivery applications as a 5-FU drug carrier.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 48","pages":"47395–47409 47395–47409"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c02247","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c02247","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The current study focuses on investigating the potential of produced graphene oxide (GO)/oil-based polyurethane composite films as a drug carrier for 5-fluorouracil (5-FU). Polyurethane was synthesized starting from blends of castor oil and sunflower oil-based glyceride, followed by GO and 5-FU anticancer drug bearing film production by solution casting. GO/PU composite film samples were characterized by FTIR, TGA and SEM analysis, confirming the PU production and distribution of 5-FU drug at a homogeneous level in GO/PU films. Experimental design studies were carried out to provide insight into the influence of GO incorporation, the amount of loaded drug, and the release medium pH value on 5-FU release behavior. The amount of 5-FU delivered from GO/PU composites displayed a tendency to increase at high GO ratios and high pH values, with the obtained maximum ratio of 91.4%. From release kinetics studies, the pH-sensitive behavior of GO/PU composites was observed following a Higuchi or zero-order kinetic model depending on the GO ratio, indicating a sustained release of the drug. The in vitro cytotoxicity effect of GO/PU film through 5-FU drug release was confirmed against the MCF-7 human breast cancer cell line, while good biocompatibility of the drug-free GO/PU film against the L-929 mouse fibroblast cell line was confirmed via MTT assay test. Overall, the findings support that produced GO/PU composites hold potential for clinical drug delivery applications as a 5-FU drug carrier.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.