Accurate Coal Classification Using PAIPSO-ELM with Near-Infrared Reflectance Spectroscopy

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-11-18 DOI:10.1021/acsomega.4c0802010.1021/acsomega.4c08020
Yiyang Wang, Boyan Li, Haoyang Li and Dong Xiao*, 
{"title":"Accurate Coal Classification Using PAIPSO-ELM with Near-Infrared Reflectance Spectroscopy","authors":"Yiyang Wang,&nbsp;Boyan Li,&nbsp;Haoyang Li and Dong Xiao*,&nbsp;","doi":"10.1021/acsomega.4c0802010.1021/acsomega.4c08020","DOIUrl":null,"url":null,"abstract":"<p >China has vast proven coal reserves, encompassing a wide variety of types. However, traditional coal classification methods have limitations, often leading to inaccurate classification and inefficient utilization of coal resources. To address this issue, this paper introduces the Extreme Learning Machine (ELM) as a novel coal classification method, based on the near-infrared reflectance spectroscopy (NIRS) of coal. Initially, we collected NIRS data from coal samples using the SVC-HR-1024 spectrometer. Given the high dimensionality and strong linear correlations in NIRS data, we conducted preprocessing to enhance the usefulness of the data. In experiments, the ELM model demonstrated good classification performance. However, due to the random generation of input layer weights and hidden layer biases in the ELM model, its performance can be unstable, preventing the model from fully realizing its potential. To overcome this shortcoming, we employed the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the ELM model. Simulation results showed that the PSO-ELM model achieved a 9.68% improvement in classification accuracy compared to the original ELM model. Furthermore, we optimized the PSO algorithm by introducing exponentially decaying inertia factors and position-variant particles to further reduce the risk of the algorithm falling into local optima. The improved Position-Adaptive Inertia PSO-ELM (PAIPSO-ELM) model achieved an additional 2% increase in classification accuracy over the PSO-ELM model, without a significant increase in training time. In summary, this paper proposes a coal spectral classification method based on the PAIPSO-ELM model, effectively overcoming the limitations of traditional classification methods while meeting industrial demands for classification accuracy and speed.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 48","pages":"47756–47764 47756–47764"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c08020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c08020","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

China has vast proven coal reserves, encompassing a wide variety of types. However, traditional coal classification methods have limitations, often leading to inaccurate classification and inefficient utilization of coal resources. To address this issue, this paper introduces the Extreme Learning Machine (ELM) as a novel coal classification method, based on the near-infrared reflectance spectroscopy (NIRS) of coal. Initially, we collected NIRS data from coal samples using the SVC-HR-1024 spectrometer. Given the high dimensionality and strong linear correlations in NIRS data, we conducted preprocessing to enhance the usefulness of the data. In experiments, the ELM model demonstrated good classification performance. However, due to the random generation of input layer weights and hidden layer biases in the ELM model, its performance can be unstable, preventing the model from fully realizing its potential. To overcome this shortcoming, we employed the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the ELM model. Simulation results showed that the PSO-ELM model achieved a 9.68% improvement in classification accuracy compared to the original ELM model. Furthermore, we optimized the PSO algorithm by introducing exponentially decaying inertia factors and position-variant particles to further reduce the risk of the algorithm falling into local optima. The improved Position-Adaptive Inertia PSO-ELM (PAIPSO-ELM) model achieved an additional 2% increase in classification accuracy over the PSO-ELM model, without a significant increase in training time. In summary, this paper proposes a coal spectral classification method based on the PAIPSO-ELM model, effectively overcoming the limitations of traditional classification methods while meeting industrial demands for classification accuracy and speed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Tumor-Targeted Magnetic Micelles for Magnetic Resonance Imaging, Drug Delivery, and Overcoming Multidrug Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1