Characterization of a New Hybrid Compound (C3H8N6)2ZnCl4·2Cl: X-ray Structure, Hirshfeld Surface, Vibrational, Thermal Stability, Dielectric Relaxation, and Electrical Conductivity

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-11-20 DOI:10.1021/acsomega.4c0668510.1021/acsomega.4c06685
Sahar Zaghden, Hadhemi Ben Attia, Mohammed S. M. Abdelbaky, Abderrazek Oueslati, Santiago García-Granda, Mohamed Dammak* and Lilia Ktari, 
{"title":"Characterization of a New Hybrid Compound (C3H8N6)2ZnCl4·2Cl: X-ray Structure, Hirshfeld Surface, Vibrational, Thermal Stability, Dielectric Relaxation, and Electrical Conductivity","authors":"Sahar Zaghden,&nbsp;Hadhemi Ben Attia,&nbsp;Mohammed S. M. Abdelbaky,&nbsp;Abderrazek Oueslati,&nbsp;Santiago García-Granda,&nbsp;Mohamed Dammak* and Lilia Ktari,&nbsp;","doi":"10.1021/acsomega.4c0668510.1021/acsomega.4c06685","DOIUrl":null,"url":null,"abstract":"<p >A novel organic–inorganic material (C<sub>3</sub>H<sub>8</sub>N<sub>6</sub>)<sub>2</sub>ZnCl<sub>4</sub>·2Cl was synthesized via a slow evaporation approach and subjected to extensive characterization. Techniques involving X-ray diffraction, SEM/EDX, Hirshfeld surface examination, IR/Raman spectroscopy, thermal behavior (TG/DTG/SDTA and DSC), and electric and dielectric studies were applied. Examination of the crystal structure reveals that the synthesized material adopts a monoclinic system, particularly belonging to the <i>P</i>2<sub>1</sub>/<i>c</i> space group with unit cell parameters <i>a</i> = 11.7274(3) Å, <i>b</i> = 6.2155(2) Å, <i>c</i> = 25.7877(8) Å, β = 94.27(1)°, <i>V</i> = 1874.50(4) Å<sup>3</sup>, and <i>Z</i> = 4. Purity confirmation was established via powder X-ray diffraction analysis. Composition verification was conducted using semiquantitative EDXS analysis. The asymmetric unit comprises isolated tetrachlorozincate [ZnCl<sub>4</sub>]<sup>2–</sup> anions, two (C<sub>3</sub>H<sub>8</sub>N<sub>6</sub>)<sup>2+</sup> organic cations, and two free chlorine atoms, forming a 0D anionic network. N–H···Cl and N–H···N hydrogen bonding combined to form a 2D hydrogen-bonded network, maintaining crystal stability. Hirshfeld surface analysis elucidated intermolecular interactions, supported by 2D fingerprint plots. IR and Raman spectra analysis corroborated compound characteristics at room temperature. Thermal analysis revealed two phase transitions at 343 and 358 K, consistent with dielectric studies. Impedance spectroscopy highlighted the compound’s electrical properties, confirming thermal transitions. Conductivity studies exhibited an Arrhenius behavior. Frequency-dependent dielectric constant variations and modulus studies underscored grain and grain boundary effects, confirming the effective protonic conduction in the material.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 48","pages":"47597–47612 47597–47612"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c06685","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c06685","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel organic–inorganic material (C3H8N6)2ZnCl4·2Cl was synthesized via a slow evaporation approach and subjected to extensive characterization. Techniques involving X-ray diffraction, SEM/EDX, Hirshfeld surface examination, IR/Raman spectroscopy, thermal behavior (TG/DTG/SDTA and DSC), and electric and dielectric studies were applied. Examination of the crystal structure reveals that the synthesized material adopts a monoclinic system, particularly belonging to the P21/c space group with unit cell parameters a = 11.7274(3) Å, b = 6.2155(2) Å, c = 25.7877(8) Å, β = 94.27(1)°, V = 1874.50(4) Å3, and Z = 4. Purity confirmation was established via powder X-ray diffraction analysis. Composition verification was conducted using semiquantitative EDXS analysis. The asymmetric unit comprises isolated tetrachlorozincate [ZnCl4]2– anions, two (C3H8N6)2+ organic cations, and two free chlorine atoms, forming a 0D anionic network. N–H···Cl and N–H···N hydrogen bonding combined to form a 2D hydrogen-bonded network, maintaining crystal stability. Hirshfeld surface analysis elucidated intermolecular interactions, supported by 2D fingerprint plots. IR and Raman spectra analysis corroborated compound characteristics at room temperature. Thermal analysis revealed two phase transitions at 343 and 358 K, consistent with dielectric studies. Impedance spectroscopy highlighted the compound’s electrical properties, confirming thermal transitions. Conductivity studies exhibited an Arrhenius behavior. Frequency-dependent dielectric constant variations and modulus studies underscored grain and grain boundary effects, confirming the effective protonic conduction in the material.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Tumor-Targeted Magnetic Micelles for Magnetic Resonance Imaging, Drug Delivery, and Overcoming Multidrug Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1