Li Ji, Qiuru Huang, Yujuan Qi, Zihan Wang, Xiuwen Kong, Xiaoqi Zhu, Binbin Yang, Jiaxin Li, Xuxin He, Xiaonan Deng, Xinmeng Cheng, Hao Yu, Yi Shi, Ziwen Lin, Xinyuan Zhao*, Xiaorong Wang* and Jun Yu*,
{"title":"Quercetin and Astragaloside IV Mitigate the Developmental Abnormalities Induced by Gestational Exposure to Zinc Oxide Nanoparticles","authors":"Li Ji, Qiuru Huang, Yujuan Qi, Zihan Wang, Xiuwen Kong, Xiaoqi Zhu, Binbin Yang, Jiaxin Li, Xuxin He, Xiaonan Deng, Xinmeng Cheng, Hao Yu, Yi Shi, Ziwen Lin, Xinyuan Zhao*, Xiaorong Wang* and Jun Yu*, ","doi":"10.1021/acsomega.4c0823510.1021/acsomega.4c08235","DOIUrl":null,"url":null,"abstract":"<p >Zinc oxide (ZnO) nanoparticles (NPs) are extensively utilized in the commercial and biomedical sectors, posing heightened risks of potential cytotoxicity through various mechanisms. Nonetheless, the regulatory framework governing the gestational toxicity of ZnO NPs and the corresponding intervention strategies remain largely obscure. In this study, using the <i>Drosophila</i> model, we observed that gestational exposure to ZnO NPs led to growth and developmental anomalies in a dose-dependent manner when compared with the control (no ZnO NP exposure). Subsequent dietary administration of Quercetin and Astragaloside IV resulted in effective mitigation of the developmental toxicity induced by exposure to ZnO NPs. Moreover, the latter also triggered activation of the ferroptosis pathway. The associated parameters were successfully ameliorated by the administration of Quercetin and Astragaloside IV. Notably, treatment with Ferrostatin-1 also alleviated developmental disorders arising from exposure to ZnO NPs. In conclusion, our investigation demonstrated that exposure to ZnO NPs during gestation interfered with growth and development via the ferroptosis pathway, underscoring the significance of dietary supplementation with Quercetin and Astragaloside IV for protection against developmental toxicity.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 48","pages":"47802–47810 47802–47810"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c08235","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c08235","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) are extensively utilized in the commercial and biomedical sectors, posing heightened risks of potential cytotoxicity through various mechanisms. Nonetheless, the regulatory framework governing the gestational toxicity of ZnO NPs and the corresponding intervention strategies remain largely obscure. In this study, using the Drosophila model, we observed that gestational exposure to ZnO NPs led to growth and developmental anomalies in a dose-dependent manner when compared with the control (no ZnO NP exposure). Subsequent dietary administration of Quercetin and Astragaloside IV resulted in effective mitigation of the developmental toxicity induced by exposure to ZnO NPs. Moreover, the latter also triggered activation of the ferroptosis pathway. The associated parameters were successfully ameliorated by the administration of Quercetin and Astragaloside IV. Notably, treatment with Ferrostatin-1 also alleviated developmental disorders arising from exposure to ZnO NPs. In conclusion, our investigation demonstrated that exposure to ZnO NPs during gestation interfered with growth and development via the ferroptosis pathway, underscoring the significance of dietary supplementation with Quercetin and Astragaloside IV for protection against developmental toxicity.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.