2-Step Robust DNN Model for RSSI-Based Indoor Localization

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IEICE Communications Express Pub Date : 2024-10-10 DOI:10.23919/comex.2024XBL0165
Taisei Kosaka;Steven Wandale;Koichi Ichige
{"title":"2-Step Robust DNN Model for RSSI-Based Indoor Localization","authors":"Taisei Kosaka;Steven Wandale;Koichi Ichige","doi":"10.23919/comex.2024XBL0165","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel approach called the 2-Step Robust Deep Neural Network (DNN), designed specifically for indoor localization utilizing received signal strength indicator (RSSI) data. This method represents an advancement over the previously proposed 2-Step Extreme Gradient Boosting (XGBoost), aiming to enhance estimation precision by leveraging a single coordinate (\n<tex>$x$</tex>\n or \n<tex>$y$</tex>\n) as a feature. The pivotal alterations involve transitioning from XGBoost to DNN and refining the training data to develop a resilient learning model for positional coordinates. Through comprehensive simulations, we demonstrate that the proposed 2-Step Robust DNN attains superior estimation accuracy while preserving the absence of constraints on the dataset.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 12","pages":"513-516"},"PeriodicalIF":0.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713854","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10713854/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a novel approach called the 2-Step Robust Deep Neural Network (DNN), designed specifically for indoor localization utilizing received signal strength indicator (RSSI) data. This method represents an advancement over the previously proposed 2-Step Extreme Gradient Boosting (XGBoost), aiming to enhance estimation precision by leveraging a single coordinate ( $x$ or $y$ ) as a feature. The pivotal alterations involve transitioning from XGBoost to DNN and refining the training data to develop a resilient learning model for positional coordinates. Through comprehensive simulations, we demonstrate that the proposed 2-Step Robust DNN attains superior estimation accuracy while preserving the absence of constraints on the dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于rssi的2步鲁棒DNN模型室内定位
在本文中,我们介绍了一种称为两步鲁棒深度神经网络(DNN)的新方法,该方法专门用于利用接收到的信号强度指示器(RSSI)数据进行室内定位。该方法代表了先前提出的2-Step Extreme Gradient Boosting (XGBoost)的进步,旨在通过利用单个坐标($x$或$y$)作为特征来提高估计精度。关键的改变包括从XGBoost到DNN的转换,并改进训练数据以开发位置坐标的弹性学习模型。通过综合仿真,我们证明了所提出的2步鲁棒深度神经网络在保持数据集不受约束的情况下获得了较高的估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
期刊最新文献
Special Cluster on Antennas and Propagation Technologies in Conjunction with Main Topics of iWAT 2024 Occupancy Grid Map Estimation Method using Roadside Sensor for Cooperative Automated Driving Three-Axis Coil Array for Null-Free Near-Field Tag Reading with UHF RFID Indoor mMTC Group Targets Localization in 5G Networks Based on Parallel Chaotic Stochastic Resonance Processing of Distance Estimation Between Terminals Discrete Wigner-Ville Distribution with Wide Frequency Observation Range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1