OccCasNet: Occlusion-Aware Cascade Cost Volume for Light Field Depth Estimation

IF 4.2 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Computational Imaging Pub Date : 2024-10-30 DOI:10.1109/TCI.2024.3488563
Wentao Chao;Fuqing Duan;Xuechun Wang;Yingqian Wang;Ke Lu;Guanghui Wang
{"title":"OccCasNet: Occlusion-Aware Cascade Cost Volume for Light Field Depth Estimation","authors":"Wentao Chao;Fuqing Duan;Xuechun Wang;Yingqian Wang;Ke Lu;Guanghui Wang","doi":"10.1109/TCI.2024.3488563","DOIUrl":null,"url":null,"abstract":"Depth estimation using the Light Field (LF) technique is an essential task with a wide range of practical applications. While mainstream approaches based on multi-view stereo techniques can attain exceptional accuracy by creating finer cost volumes, they are resource-intensive, time-consuming, and often overlook occlusion during cost volume construction. To address these issues and strike a better balance between accuracy and efficiency, we propose an occlusion-aware cascade cost volume for LF depth (disparity) estimation. Our cascaded strategy reduces the sampling number while maintaining a constant sampling interval, enabling the construction of a finer cost volume. We also introduce occlusion maps to enhance accuracy in constructing the occlusion-aware cost volume. Specifically, we first generate a coarse disparity map through a coarse disparity estimation network. Then, we warp the sub-aperture images (SAIs) of adjacent views to the center view based on the coarse disparity map to generate occlusion maps for each SAI by photo-consistency constraints. Finally, we seamlessly incorporate occlusion maps into cascade cost volume to construct an occlusion-aware refined cost volume, allowing the refined disparity estimation network to yield a more precise disparity map. Extensive experiments demonstrate the effectiveness of our method. Compared with the state-of-the-art techniques, our method achieves a superior balance between accuracy and efficiency, ranking first in the Q25 metric on the HCI 4D benchmark.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"1680-1691"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10738443/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Depth estimation using the Light Field (LF) technique is an essential task with a wide range of practical applications. While mainstream approaches based on multi-view stereo techniques can attain exceptional accuracy by creating finer cost volumes, they are resource-intensive, time-consuming, and often overlook occlusion during cost volume construction. To address these issues and strike a better balance between accuracy and efficiency, we propose an occlusion-aware cascade cost volume for LF depth (disparity) estimation. Our cascaded strategy reduces the sampling number while maintaining a constant sampling interval, enabling the construction of a finer cost volume. We also introduce occlusion maps to enhance accuracy in constructing the occlusion-aware cost volume. Specifically, we first generate a coarse disparity map through a coarse disparity estimation network. Then, we warp the sub-aperture images (SAIs) of adjacent views to the center view based on the coarse disparity map to generate occlusion maps for each SAI by photo-consistency constraints. Finally, we seamlessly incorporate occlusion maps into cascade cost volume to construct an occlusion-aware refined cost volume, allowing the refined disparity estimation network to yield a more precise disparity map. Extensive experiments demonstrate the effectiveness of our method. Compared with the state-of-the-art techniques, our method achieves a superior balance between accuracy and efficiency, ranking first in the Q25 metric on the HCI 4D benchmark.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OccCasNet:光场深度估计的光场感知级联成本体积
利用光场(LF)技术进行深度估计是一项具有广泛实际应用的重要任务。虽然基于多视图立体技术的主流方法可以通过创建更精细的成本体来获得卓越的精度,但它们是资源密集型的,耗时的,并且在成本体构建过程中经常忽略遮挡。为了解决这些问题并在准确性和效率之间取得更好的平衡,我们提出了用于LF深度(视差)估计的闭塞感知级联成本量。我们的级联策略在保持恒定采样间隔的同时减少了采样次数,从而能够构建更精细的成本体积。我们还引入了遮挡贴图来提高构建遮挡感知成本体的准确性。具体来说,我们首先通过粗视差估计网络生成粗视差图。然后,我们基于粗视差图将相邻视图的子孔径图像(SAIs)扭曲到中心视图,通过光一致性约束为每个SAIs生成遮挡图。最后,我们将遮挡图无缝地整合到级联代价体中,构建一个感知遮挡的精细化代价体,使精细化的视差估计网络产生更精确的视差图。大量的实验证明了该方法的有效性。与最先进的技术相比,我们的方法在精度和效率之间取得了卓越的平衡,在HCI 4D基准的Q25指标中排名第一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Computational Imaging
IEEE Transactions on Computational Imaging Mathematics-Computational Mathematics
CiteScore
8.20
自引率
7.40%
发文量
59
期刊介绍: The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.
期刊最新文献
Full Matrix Wavefield Migration for Layered Photoacoustic Imaging GroupCDL: Interpretable Denoising and Compressed Sensing MRI via Learned Group-Sparsity and Circulant Attention Looking Around Flatland: End-to-End 2D Real-Time NLOS Imaging Computational Comparison and Validation of Point Spread Functions for Optical Microscopes Estimation-Denoising Integration Network Architecture With Updated Parameter for MRI Reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1