{"title":"ZnO/PMMA Nanofibers for the Photocatalytic Water Remediation","authors":"Kinyas Polat, Elif Ant Bursalı, Mürüvvet Yurdakoç","doi":"10.1007/s10876-024-02729-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a novel ZnO/PMMA nanofiber catalyst was fabricated using electrospinning, resulting in a barbed wire-like structure that enhances photocatalytic performance. The research aimed to investigate the material’s effectiveness in degrading organic pollutants under UV light, providing a sustainable solution for water purification. Comprehensive characterization techniques, including XRD, XPS, SEM, EDS, and FTIR, were employed to analyze the crystal structure, micromorphology, and elemental composition of the catalyst. Photocatalytic degradation experiments showed that up to 91% degradation was achieved after 60 min of UV light irradiation at pH 11, with no significant bulk adsorption observed, confirming the dominance of the photocatalytic mechanism. The optimized pH of 11 was found to be ideal for achieving high degradation rates. This novel ZnO/PMMA nanofiber structure demonstrates significant potential for environmental applications, particularly in water purification, offering an efficient and sustainable approach to pollutant removal.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02729-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a novel ZnO/PMMA nanofiber catalyst was fabricated using electrospinning, resulting in a barbed wire-like structure that enhances photocatalytic performance. The research aimed to investigate the material’s effectiveness in degrading organic pollutants under UV light, providing a sustainable solution for water purification. Comprehensive characterization techniques, including XRD, XPS, SEM, EDS, and FTIR, were employed to analyze the crystal structure, micromorphology, and elemental composition of the catalyst. Photocatalytic degradation experiments showed that up to 91% degradation was achieved after 60 min of UV light irradiation at pH 11, with no significant bulk adsorption observed, confirming the dominance of the photocatalytic mechanism. The optimized pH of 11 was found to be ideal for achieving high degradation rates. This novel ZnO/PMMA nanofiber structure demonstrates significant potential for environmental applications, particularly in water purification, offering an efficient and sustainable approach to pollutant removal.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.