Dual Therapeutic Potential of Bioengineered Ag-doped HAp Nanocomposites Against Proteus mirabilis and MCF-7 Breast Cancer Cell Line

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Cluster Science Pub Date : 2024-12-03 DOI:10.1007/s10876-024-02741-7
Suvetha Selvam, Alycia Devasagayam, Arun Kumar Mani
{"title":"Dual Therapeutic Potential of Bioengineered Ag-doped HAp Nanocomposites Against Proteus mirabilis and MCF-7 Breast Cancer Cell Line","authors":"Suvetha Selvam,&nbsp;Alycia Devasagayam,&nbsp;Arun Kumar Mani","doi":"10.1007/s10876-024-02741-7","DOIUrl":null,"url":null,"abstract":"<div><p>Globally, the major threat is the rise of antimicrobial-resistant diseases and the increasing incidence of cancer, both of which are leading causes of death due to a lack of effective therapies. Nanocomposites (NCs) have recently emerged as an alternative therapeutic agent for the development of novel medications. The current study demonstrates the fast production of Ag-HAp NCs with an aqueous bark extract of <i>Acacia nilotica</i> and evaluates their antiquorum sensing and anticancer activities. UV-vis spectroscopy, Fourier-transformed infrared spectroscopy, X-ray diffraction analysis, zeta sizer, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to evaluate the physicochemical and morphological observations of Ag-HAp NCs. The biofabricated NCs demonstrated the ability to inhibit the violacein production in bioreporter strain <i>Chromobacterium violaceum</i> and mitigate the virulent factors in multidrug-resistant <i>Proteus mirabilis.</i> Sub-MIC concentrations of 2% Ag-HAp NCs (80 µg/mL) efficiently decreased the quorum sensing regulated virulence factors such as biofilm formation, exopolysaccharide synthesis, urease, hemolysin, and cell motility, that contribute to antibiotic resistance. Furthermore, an <i>invitro</i> cytotoxicity study of 2% Ag-HAp NCs revealed exceptional anticancer potential against the MCF-7 cell line using MTT assay. The microscopic studies (ROS and DAPI assay) demonstrated that the synthesized NCs elicit cellular cytotoxicity at a low dosage (IC<sub>50</sub> − 23.2 µg/mL). All experiments were carried out in triplicate (<i>n</i> = 3) to establish the statistical significance. Thus, phyto-mediated synthesized 2% Ag-HAp NCs are environmentally acceptable and non-toxic nanomaterials suitable for biomedical applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02741-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Globally, the major threat is the rise of antimicrobial-resistant diseases and the increasing incidence of cancer, both of which are leading causes of death due to a lack of effective therapies. Nanocomposites (NCs) have recently emerged as an alternative therapeutic agent for the development of novel medications. The current study demonstrates the fast production of Ag-HAp NCs with an aqueous bark extract of Acacia nilotica and evaluates their antiquorum sensing and anticancer activities. UV-vis spectroscopy, Fourier-transformed infrared spectroscopy, X-ray diffraction analysis, zeta sizer, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to evaluate the physicochemical and morphological observations of Ag-HAp NCs. The biofabricated NCs demonstrated the ability to inhibit the violacein production in bioreporter strain Chromobacterium violaceum and mitigate the virulent factors in multidrug-resistant Proteus mirabilis. Sub-MIC concentrations of 2% Ag-HAp NCs (80 µg/mL) efficiently decreased the quorum sensing regulated virulence factors such as biofilm formation, exopolysaccharide synthesis, urease, hemolysin, and cell motility, that contribute to antibiotic resistance. Furthermore, an invitro cytotoxicity study of 2% Ag-HAp NCs revealed exceptional anticancer potential against the MCF-7 cell line using MTT assay. The microscopic studies (ROS and DAPI assay) demonstrated that the synthesized NCs elicit cellular cytotoxicity at a low dosage (IC50 − 23.2 µg/mL). All experiments were carried out in triplicate (n = 3) to establish the statistical significance. Thus, phyto-mediated synthesized 2% Ag-HAp NCs are environmentally acceptable and non-toxic nanomaterials suitable for biomedical applications.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物工程ag掺杂HAp纳米复合材料对神奇变形杆菌和MCF-7乳腺癌细胞系的双重治疗潜力
在全球范围内,主要威胁是抗微生物药物耐药性疾病的增加和癌症发病率的增加,由于缺乏有效的治疗方法,这两种疾病都是导致死亡的主要原因。纳米复合材料(NCs)近年来成为开发新型药物的一种替代治疗药物。本研究证明了用金合欢树皮水提物快速生产Ag-HAp NCs,并评价了其抗虫群感应和抗癌活性。采用紫外-可见光谱、傅里叶变换红外光谱、x射线衍射分析、zeta分级机、场发射扫描电镜和高分辨率透射电镜对Ag-HAp NCs进行了理化和形态学观察。生物合成的NCs能够抑制生物报告菌株violaceum中紫罗兰素的产生,并减轻多重耐药奇异变形杆菌的毒力因子。低于mic浓度的2% Ag-HAp NCs(80µg/mL)有效降低了群体感应调节的毒力因子,如生物膜形成、胞外多糖合成、脲酶、溶血素和细胞运动,这些因素有助于抗生素耐药性。此外,使用MTT法对2% Ag-HAp NCs进行的体外细胞毒性研究显示,其对MCF-7细胞系具有特殊的抗癌潜力。显微研究(ROS和DAPI)表明,合成的nc在低剂量(IC50 - 23.2µg/mL)下引起细胞毒性。所有实验均为三次重复(n = 3),以确定统计学意义。因此,植物介导合成的2% Ag-HAp纳米细胞是一种环境可接受且无毒的纳米材料,适合生物医学应用。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
期刊最新文献
Synthesis and Application of Zr MOF UiO-66 Decorated with Folic Acid-Conjugated Poly Ethylene Glycol as a Strong Nanocarrier for the Targeted Drug Delivery of Epirubicin Biogenic Copper/Zinc Oxide Nanocomposites from Bixa orellana: Anticancer Effects through ROS Generation and Apoptosis Induction in Cervical Carcinoma Harnessing Oregano Nanoemulsion: A Novel Solution to Combat Curvalaria-Induced Fruit Rot and Preserve Mango Quality Photocatalytic Performance of Spinel Ferrites and their Carbon-Based Composites for Environmental Pollutant Degradation Tailoring the Catalytic Activity of Fe3O4 Nanoparticles for KNO3 Decomposition via Surface Functionalization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1