Determination of the porosity of Didim H3-5 meteorite using pycnometry and three-dimensional laser scanning

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Astrophysics and Space Science Pub Date : 2024-12-03 DOI:10.1007/s10509-024-04384-6
Cisem Altunayar-Unsalan, Ozan Unsalan
{"title":"Determination of the porosity of Didim H3-5 meteorite using pycnometry and three-dimensional laser scanning","authors":"Cisem Altunayar-Unsalan,&nbsp;Ozan Unsalan","doi":"10.1007/s10509-024-04384-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the porosity of the Didim H3−5 chondrite, providing insights into its physical and structural properties. Using the 3D laser scanning, we determined, that the bulk volume and the bulk density of Didim are 17.15 cm<sup>3</sup> and 3.16 g/cm<sup>3</sup>, respectively. Through helium pycnometry, we found thatthe grain volume and the grain density of Didim chondrite are 1.41 cm<sup>3</sup> and 3.64±0.001 g/cm<sup>3</sup>. We calculated that Didim has a porosity of 13.28±0.024%, which is consistent with similar chondrites, such as Fermo, but higher than Acfer 166 and Oum Dreyga. To establish robust links between meteorites and their possible parent bodies, further systematic and multi-analytical efforts, such as those used in this study, are requiredto accurately characterize meteorites’ porosities. Among the primary minerals in H3−5 chondrites, iron-nickel metals and iron-sulfides are also distributed heterogeneously in these ordinary chondrites. Using a combined approach of pycnometry and 3D laser scanning, we can further interpret shock processes from impacts on the parent body and weathering on Earth can be further interpreted in terms of their geologic history and the environmental conditions experienced by these chondrites both in parent bodies and after landing on Earth.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 12","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04384-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the porosity of the Didim H3−5 chondrite, providing insights into its physical and structural properties. Using the 3D laser scanning, we determined, that the bulk volume and the bulk density of Didim are 17.15 cm3 and 3.16 g/cm3, respectively. Through helium pycnometry, we found thatthe grain volume and the grain density of Didim chondrite are 1.41 cm3 and 3.64±0.001 g/cm3. We calculated that Didim has a porosity of 13.28±0.024%, which is consistent with similar chondrites, such as Fermo, but higher than Acfer 166 and Oum Dreyga. To establish robust links between meteorites and their possible parent bodies, further systematic and multi-analytical efforts, such as those used in this study, are requiredto accurately characterize meteorites’ porosities. Among the primary minerals in H3−5 chondrites, iron-nickel metals and iron-sulfides are also distributed heterogeneously in these ordinary chondrites. Using a combined approach of pycnometry and 3D laser scanning, we can further interpret shock processes from impacts on the parent body and weathering on Earth can be further interpreted in terms of their geologic history and the environmental conditions experienced by these chondrites both in parent bodies and after landing on Earth.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Didim H3-5陨石孔隙度的三维激光扫描测定
这项研究的重点是Didim H3−5球粒陨石的孔隙度,为其物理和结构特性提供见解。通过三维激光扫描,我们确定Didim的体积和容重分别为17.15 cm3和3.16 g/cm3。通过氦体积测量,我们发现Didim球粒陨石的晶粒体积和晶粒密度分别为1.41 cm3和3.64±0.001 g/cm3。我们计算出Didim的孔隙度为13.28±0.024%,与Fermo等类似球粒陨石的孔隙度一致,但高于Acfer 166和Oum Dreyga。为了在陨石与其可能的母体之间建立可靠的联系,需要进一步的系统和多分析工作,如本研究中使用的,以准确表征陨石的孔隙度。在H3−5球粒陨石中的原生矿物中,铁镍金属和铁硫化物在这些普通球粒陨石中也呈非均质分布。利用体积测量和三维激光扫描相结合的方法,我们可以进一步解释撞击母体的冲击过程,而地球上的风化作用可以进一步解释这些球粒陨石在母体和着陆后所经历的地质历史和环境条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
期刊最新文献
The shape of magnetic hole in affecting electron distribution function and wave properties Dispersion relations of relativistic radiation hydrodynamics Dust acoustic soliton and shock structures with consequence of head-on collision in multi-component unmagnetized plasmas Comparative study of linear & non-linear \(f(T)\) gravity models in Bianchi type-III space-time Resolved spectroscopic binaries: orbital elements and parallaxes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1