Investigation of flow characteristics of various-aspect-ratio rectangular nozzles with an aft deck

IF 1.7 4区 工程技术 Q3 MECHANICS Shock Waves Pub Date : 2024-11-30 DOI:10.1007/s00193-024-01188-z
W.-L. Chen, W.-H. Huang, W.-H. Lai
{"title":"Investigation of flow characteristics of various-aspect-ratio rectangular nozzles with an aft deck","authors":"W.-L. Chen,&nbsp;W.-H. Huang,&nbsp;W.-H. Lai","doi":"10.1007/s00193-024-01188-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents an experimental and numerical investigation to characterize the plume pattern of a high-aspect-ratio rectangular convergent/divergent nozzle with an aft deck in under-expanded conditions. The function of an aft deck is to shield the infrared signal of an exhaust plume at its strongest intensity located at the immediate downstream region of the nozzle exit. However, this practice may cause undesirable plume deflection, which needs to be reduced as much as possible. The nozzle pressure ratios ranged from 2 to 4, and the effect of the nozzle exit aspect ratio was examined using wall static pressure measurements and schlieren visualization for cold flows. The experimental setup involved a 3D-printed aft deck nozzle made of acrylonitrile butadiene styrene material, which underwent surface smoothing using acetone vapor. Numerical simulations were conducted using the commercial STARCCM<span>\\(^{\\mathrm {+}}\\)</span> software to analyze static pressure ratio variations at the aft deck. The investigation revealed that a nozzle pressure ratio of 3 induced a downward plume deflection at aspect ratio values of 6.77 and 7.54, while an increased aspect ratio of 8.35 resulted in the horizontal ejection of the plume. Moreover, at an aspect ratio of 8.35, the plume was ejected horizontally for nozzle pressure ratios ranging from 2 to 4. At a nozzle pressure ratio of 4, the flow separated from the deck without reattaching, and the plume moved horizontally with minimal deflection. The findings suggest that a combination of a high aspect ratio and sufficiently high nozzle pressure ratio can effectively reduce plume deflection.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 6","pages":"527 - 538"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-024-01188-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-024-01188-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an experimental and numerical investigation to characterize the plume pattern of a high-aspect-ratio rectangular convergent/divergent nozzle with an aft deck in under-expanded conditions. The function of an aft deck is to shield the infrared signal of an exhaust plume at its strongest intensity located at the immediate downstream region of the nozzle exit. However, this practice may cause undesirable plume deflection, which needs to be reduced as much as possible. The nozzle pressure ratios ranged from 2 to 4, and the effect of the nozzle exit aspect ratio was examined using wall static pressure measurements and schlieren visualization for cold flows. The experimental setup involved a 3D-printed aft deck nozzle made of acrylonitrile butadiene styrene material, which underwent surface smoothing using acetone vapor. Numerical simulations were conducted using the commercial STARCCM\(^{\mathrm {+}}\) software to analyze static pressure ratio variations at the aft deck. The investigation revealed that a nozzle pressure ratio of 3 induced a downward plume deflection at aspect ratio values of 6.77 and 7.54, while an increased aspect ratio of 8.35 resulted in the horizontal ejection of the plume. Moreover, at an aspect ratio of 8.35, the plume was ejected horizontally for nozzle pressure ratios ranging from 2 to 4. At a nozzle pressure ratio of 4, the flow separated from the deck without reattaching, and the plume moved horizontally with minimal deflection. The findings suggest that a combination of a high aspect ratio and sufficiently high nozzle pressure ratio can effectively reduce plume deflection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带后甲板的不同展弦比矩形喷管流动特性研究
本文采用实验和数值方法研究了带后甲板的高展弦比矩形会聚/发散喷管在欠膨胀条件下的羽流特征。后甲板的作用是屏蔽位于喷管出口直接下游区域的最强强度的排气羽流的红外信号。然而,这种做法可能会导致不希望的羽流偏转,这需要尽可能地减少。喷嘴压力比范围为2 ~ 4,并通过壁面静压测量和冷流动纹影显示来研究喷嘴出口宽高比的影响。实验装置包括一个3d打印的后甲板喷嘴,该喷嘴由丙烯腈-丁二烯-苯乙烯材料制成,使用丙酮蒸汽进行表面平滑。采用商用STARCCM \(^{\mathrm {+}}\)软件进行数值模拟,分析后甲板静压比变化。研究发现,当喷嘴压力比为3时,在展弦比为6.77和7.54时,羽流会向下偏转,而当展弦比增加到8.35时,羽流会向水平方向喷射。此外,在长径比为8.35时,喷嘴压力比为2 ~ 4时羽流水平喷射。在喷嘴压力比为4时,气流从甲板上分离而没有重新附着,羽流以最小的偏转水平移动。研究结果表明,高展弦比和足够高的喷嘴压力比相结合可以有效地减少羽流偏转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Shock Waves
Shock Waves 物理-力学
CiteScore
4.10
自引率
9.10%
发文量
41
审稿时长
17.4 months
期刊介绍: Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization. The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine. Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community. The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.
期刊最新文献
Investigation of flow characteristics of various-aspect-ratio rectangular nozzles with an aft deck Normal shock wave coherence relative to other flow events with high and low levels of inlet Mach wave unsteadiness Numerical and experimental study of underwash effect and its role in blast-induced traumatic brain injury The simultaneous macroscopic and mesoscopic numerical simulation of metal spalling by using the fine-mesh finite element—smoothed particle hydrodynamics adaptive method Higher-order moments of the Mott-Smith shock approximation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1