An Integrated Model with Reconstructed Full-Scale Shale Matrix and Fractures

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Transport in Porous Media Pub Date : 2024-12-03 DOI:10.1007/s11242-024-02144-2
Jingchun Feng, Qingrong Xiong, Diansen Yang
{"title":"An Integrated Model with Reconstructed Full-Scale Shale Matrix and Fractures","authors":"Jingchun Feng,&nbsp;Qingrong Xiong,&nbsp;Diansen Yang","doi":"10.1007/s11242-024-02144-2","DOIUrl":null,"url":null,"abstract":"<div><p>Four types of voids exist in shale, including inorganic pores, organic pores, natural fractures, and hydraulic fractures, where the gas flow within is affected by voids sizes, shapes, and the mineral composition surrounding them. It is still a challenge to build an effective multi-scale model for shale by now. A model classifying organic pores and inorganic pores with and without clay was proposed in our previous work by incorporating various testing methods. However, some improvements can be made, including wider the pore size of the model to full-scale and adding the fractures without being considered previously. Therefore, a new model is proposed by integrating an improved full-scale matrix pore network model (PNM) with fractures. That is, the effects of four types of voids, including organic pores, inorganic pores containing clay, inorganic pores without clay, and fractures, on gas flow are all considered in the model. Then, the factors affecting the permeability of the matrix (i.e., without fractures) and the whole model (i.e., with fractures) were analyzed. The results show that connectivity both in small- and large-scale PNM and total organic content facilitate the flow, while clay content and water film thickness hinder the flow, especially within small pores. Fractures along the pressure drop accelerate gas flow, and the fractures perpendicular to the pressure drop only channel the pressure when the fractures along the pressure drop both exist. The model can be applied to other mudstones and shales and studies the fluid migration within them through proper parameters adjustment.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02144-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Four types of voids exist in shale, including inorganic pores, organic pores, natural fractures, and hydraulic fractures, where the gas flow within is affected by voids sizes, shapes, and the mineral composition surrounding them. It is still a challenge to build an effective multi-scale model for shale by now. A model classifying organic pores and inorganic pores with and without clay was proposed in our previous work by incorporating various testing methods. However, some improvements can be made, including wider the pore size of the model to full-scale and adding the fractures without being considered previously. Therefore, a new model is proposed by integrating an improved full-scale matrix pore network model (PNM) with fractures. That is, the effects of four types of voids, including organic pores, inorganic pores containing clay, inorganic pores without clay, and fractures, on gas flow are all considered in the model. Then, the factors affecting the permeability of the matrix (i.e., without fractures) and the whole model (i.e., with fractures) were analyzed. The results show that connectivity both in small- and large-scale PNM and total organic content facilitate the flow, while clay content and water film thickness hinder the flow, especially within small pores. Fractures along the pressure drop accelerate gas flow, and the fractures perpendicular to the pressure drop only channel the pressure when the fractures along the pressure drop both exist. The model can be applied to other mudstones and shales and studies the fluid migration within them through proper parameters adjustment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全尺寸页岩基质和裂缝重建的综合模型
页岩中存在四种类型的孔隙,包括无机孔隙、有机孔隙、天然裂缝和水力裂缝,其中的气体流动受孔隙大小、形状和周围矿物成分的影响。目前,建立有效的页岩气多尺度模型仍然是一个挑战。在前人的工作中,我们综合了各种测试方法,提出了一个有机孔隙和无机孔隙的分类模型。然而,可以进行一些改进,包括将模型的孔径扩大到全尺寸,以及在之前没有考虑的情况下添加裂缝。因此,将改进的全尺寸基质孔隙网络模型(PNM)与裂缝相结合,提出了一种新的模型。即模型中考虑了有机孔隙、含粘土无机孔隙、不含粘土无机孔隙和裂缝四种孔隙类型对气体流动的影响。然后,分析了影响基质(无裂缝)和整个模型(有裂缝)渗透率的因素。结果表明:大、小孔隙中的连通性和总有机含量均有利于流动,而粘土含量和水膜厚度则阻碍流动,尤其是在小孔隙中。沿压降方向的裂缝加速气体流动,而沿压降方向的裂缝只在沿压降方向的裂缝同时存在时才对气体流动进行疏导。该模型可应用于其他泥岩和页岩,通过适当的参数调整,研究泥岩和页岩内部的流体运移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transport in Porous Media
Transport in Porous Media 工程技术-工程:化工
CiteScore
5.30
自引率
7.40%
发文量
155
审稿时长
4.2 months
期刊介绍: -Publishes original research on physical, chemical, and biological aspects of transport in porous media- Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)- Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications- Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes- Expanded in 2007 from 12 to 15 issues per year. Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).
期刊最新文献
Dynamics of Contaminant Flow Through Porous Media Containing Random Adsorbers Numerical Analysis of Liquid Jet Impingement through Confined Uniform Cooling Channels Employing Porous Metal Foams Exploring Effective Diffusion Coefficients in Water-Saturated Reservoir Rocks via the Pressure Decay Technique: Implications for Underground Hydrogen Storage Kelvin–Voigt Fluid Models in Double-Diffusive Porous Convection Pore-space partitioning in geological porous media using the curvature of the distance map
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1