R. C. DiviaHarshaVardini, G. Rajesh, K. Arul Prakash
{"title":"A numerical study of laminar/transitional shock–boundary layer interaction on a hypersonic double wedge using a modified \\(\\gamma \\)-transition model","authors":"R. C. DiviaHarshaVardini, G. Rajesh, K. Arul Prakash","doi":"10.1007/s00193-024-01187-0","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate prediction of the shock–boundary layer interactions (SBLIs) region, encompassing boundary layer separation, reattachment, and transition, is crucial for high-speed flows due to its impact on the aerothermodynamics and performance, particularly at hypersonic speed. Among various types of compression ramp SBLI (laminar, turbulent, or transitional), several experimental and numerical investigations on turbulent SBLI are available in the literature. However, very few RANS-based numerical studies exist on the high-speed laminar/transitional SBLI due to the complexity of modeling the boundary layer transition in hypersonic flows. This study numerically analyzes boundary layer transition and the SBLI interaction region of a double-wedge configuration at hypersonic speeds using a modified <span>\\(\\gamma \\)</span>-transition model. An in-house solver developed with a transition model and SST <i>k</i>–<span>\\(\\omega \\)</span> turbulence model is utilized for this study. A parametric analysis is also carried out to study the effect of wall temperature, wedge length, and wedge angle on the interaction region and transition for various types of compression ramp SBLI. The separation region of the boundary layer and the transition location were estimated using numerical schlieren and Stanton numbers for different parameters. The results show that the modified <span>\\(\\gamma \\)</span>-model predicts the boundary layer separation, reattachment, and transition of laminar/transitional SBLI appropriately compared to a fully turbulent model for all considered parameters.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 6","pages":"515 - 525"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-024-01187-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of the shock–boundary layer interactions (SBLIs) region, encompassing boundary layer separation, reattachment, and transition, is crucial for high-speed flows due to its impact on the aerothermodynamics and performance, particularly at hypersonic speed. Among various types of compression ramp SBLI (laminar, turbulent, or transitional), several experimental and numerical investigations on turbulent SBLI are available in the literature. However, very few RANS-based numerical studies exist on the high-speed laminar/transitional SBLI due to the complexity of modeling the boundary layer transition in hypersonic flows. This study numerically analyzes boundary layer transition and the SBLI interaction region of a double-wedge configuration at hypersonic speeds using a modified \(\gamma \)-transition model. An in-house solver developed with a transition model and SST k–\(\omega \) turbulence model is utilized for this study. A parametric analysis is also carried out to study the effect of wall temperature, wedge length, and wedge angle on the interaction region and transition for various types of compression ramp SBLI. The separation region of the boundary layer and the transition location were estimated using numerical schlieren and Stanton numbers for different parameters. The results show that the modified \(\gamma \)-model predicts the boundary layer separation, reattachment, and transition of laminar/transitional SBLI appropriately compared to a fully turbulent model for all considered parameters.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.