Subtype-specific transcription factors affect polyamine metabolism and the tumor microenvironment in breast cancer

Cancer Innovation Pub Date : 2024-12-02 DOI:10.1002/cai2.138
Qi Song, Yixuan Wang, Sen Liu
{"title":"Subtype-specific transcription factors affect polyamine metabolism and the tumor microenvironment in breast cancer","authors":"Qi Song,&nbsp;Yixuan Wang,&nbsp;Sen Liu","doi":"10.1002/cai2.138","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Polyamines play important roles in cell growth and proliferation. Polyamine metabolism genes are dysregulated in various tumors. Some polyamine metabolism genes are regulated by transcription factors. However, the transcription factors that regulate polyamine metabolism genes have not been completely identified. Additionally, whether any of the transcriptional regulations depend on tumor heterogeneity and the tumor microenvironment has not been investigated.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We used bulk RNA-seq data to identify dysregulated polyamine metabolism genes and their transcription factors across breast cancer subtypes. Genes highly correlated with polyamine changes were obtained, and their subtype-specific expressions were checked in tumor microenvironment cells using single-cell RNA (scRNA)-seq data. Gene Ontology enrichment analysis was used to explore their molecular functions and biological processes, and survival analysis was used to examine the impact of these genes on therapeutic outcome.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We first analyzed the dysregulation of polyamine synthesis, catabolism, and transport in four breast cancer subtypes. Genes such as <i>AGMAT</i> and <i>CAV1</i> were dysregulated across all subtypes, while <i>APRT</i>, <i>SAT1</i>, and other genes were dysregulated in the more lethal subtypes. Among the dysregulated genes of polyamine metabolism, we focused on three genes (<i>SRM</i>, <i>APRT</i>, and <i>SAT1</i>) and identified their transcription factors (SPI1 and IRF1 correspond to <i>SAT1</i>, and IRF3 corresponds to <i>SRM</i> and <i>APRT</i>). With scRNA-seq data, we verified that these three transcription factors also regulated these three polyamine metabolism genes in the tumor microenvironment. Both bulk RNA-seq and scRNA-seq data indicated that these genes were specifically upregulated in high-risk breast cancer subtypes, such as the basal-like type. High expression of these genes corresponded to worse outcomes in the basal-like subtype under chemotherapy and radiation treatment.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Our work identified three subtype-specific transcription factors that regulate three polyamine metabolism genes in high-risk breast cancer subtypes and the tumor microenvironment. Our results deepen the understanding of the role of polyamine metabolism in breast cancer and may help the clinical therapy of advanced breast cancer subtypes.</p>\n </section>\n </div>","PeriodicalId":100212,"journal":{"name":"Cancer Innovation","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cai2.138","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Innovation","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cai2.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Polyamines play important roles in cell growth and proliferation. Polyamine metabolism genes are dysregulated in various tumors. Some polyamine metabolism genes are regulated by transcription factors. However, the transcription factors that regulate polyamine metabolism genes have not been completely identified. Additionally, whether any of the transcriptional regulations depend on tumor heterogeneity and the tumor microenvironment has not been investigated.

Methods

We used bulk RNA-seq data to identify dysregulated polyamine metabolism genes and their transcription factors across breast cancer subtypes. Genes highly correlated with polyamine changes were obtained, and their subtype-specific expressions were checked in tumor microenvironment cells using single-cell RNA (scRNA)-seq data. Gene Ontology enrichment analysis was used to explore their molecular functions and biological processes, and survival analysis was used to examine the impact of these genes on therapeutic outcome.

Results

We first analyzed the dysregulation of polyamine synthesis, catabolism, and transport in four breast cancer subtypes. Genes such as AGMAT and CAV1 were dysregulated across all subtypes, while APRT, SAT1, and other genes were dysregulated in the more lethal subtypes. Among the dysregulated genes of polyamine metabolism, we focused on three genes (SRM, APRT, and SAT1) and identified their transcription factors (SPI1 and IRF1 correspond to SAT1, and IRF3 corresponds to SRM and APRT). With scRNA-seq data, we verified that these three transcription factors also regulated these three polyamine metabolism genes in the tumor microenvironment. Both bulk RNA-seq and scRNA-seq data indicated that these genes were specifically upregulated in high-risk breast cancer subtypes, such as the basal-like type. High expression of these genes corresponded to worse outcomes in the basal-like subtype under chemotherapy and radiation treatment.

Conclusion

Our work identified three subtype-specific transcription factors that regulate three polyamine metabolism genes in high-risk breast cancer subtypes and the tumor microenvironment. Our results deepen the understanding of the role of polyamine metabolism in breast cancer and may help the clinical therapy of advanced breast cancer subtypes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
lncRNA TCONS_00251376 promotes the proliferation and migration of gastric cancer cell through upregulating ETV1 Expression pattern and prognostic significance of aldehyde dehydrogenase 2 in lung adenocarcinoma as a potential predictor of immunotherapy efficacy Subtype-specific transcription factors affect polyamine metabolism and the tumor microenvironment in breast cancer Effectiveness of ultrasound-guided vacuum-assisted excision for treating benign breast lesions Mitigating ibrutinib-induced ventricular arrhythmia and cardiac dysfunction with metformin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1