Wideband beam domain sparse Bayesian learning passive focusing localisation algorithm

IF 1.5 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Radar Sonar and Navigation Pub Date : 2024-10-06 DOI:10.1049/rsn2.12642
Hao Wang, Hong Zhang, Qiming Ma, Shuanping Du
{"title":"Wideband beam domain sparse Bayesian learning passive focusing localisation algorithm","authors":"Hao Wang,&nbsp;Hong Zhang,&nbsp;Qiming Ma,&nbsp;Shuanping Du","doi":"10.1049/rsn2.12642","DOIUrl":null,"url":null,"abstract":"<p>To address the challenges of large-aperture sonar systems passive localisation, this paper proposes the application of sparse Bayesian learning (SBL) for passive target localisation in the wideband beam domain. The proposed algorithm aims to overcome the issues of massive computational requirements for two-dimensional SBL scanning and increased localisation errors due to interference energy leakage. The wideband beam domain SBL focusing localisation algorithm is developed by constructing an azimuth-range two-dimensional transformation matrix to preprocess array data, which effectively reduces the computational load of SBL processing while suppressing strong interference energy leakage in passive sonar operating environments, thus improving the range resolution and parameter estimation accuracy of focusing localisation. Simulation and sea trial data analyses demonstrate the feasibility of the proposed algorithm, with results indicating its superior performance compared to existing algorithms.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 11","pages":"2295-2307"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12642","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rsn2.12642","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To address the challenges of large-aperture sonar systems passive localisation, this paper proposes the application of sparse Bayesian learning (SBL) for passive target localisation in the wideband beam domain. The proposed algorithm aims to overcome the issues of massive computational requirements for two-dimensional SBL scanning and increased localisation errors due to interference energy leakage. The wideband beam domain SBL focusing localisation algorithm is developed by constructing an azimuth-range two-dimensional transformation matrix to preprocess array data, which effectively reduces the computational load of SBL processing while suppressing strong interference energy leakage in passive sonar operating environments, thus improving the range resolution and parameter estimation accuracy of focusing localisation. Simulation and sea trial data analyses demonstrate the feasibility of the proposed algorithm, with results indicating its superior performance compared to existing algorithms.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宽带波束域稀疏贝叶斯学习被动聚焦定位算法
​该算法旨在克服二维SBL扫描的大量计算需求和由于干扰能量泄漏导致的定位误差增加的问题。通过构建方位角-距离二维变换矩阵对阵列数据进行预处理,开发了宽带波束域SBL聚焦定位算法,有效降低了SBL处理的计算量,同时抑制了被动声纳工作环境中强干扰能量泄漏,从而提高了聚焦定位的距离分辨率和参数估计精度。仿真和海试数据分析验证了该算法的可行性,结果表明该算法的性能优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
期刊最新文献
Rapid Target Search Method for Distributed Aperture Radar via Role Reversal Convolutional Neural Network Based Joint Estimation of Direction of Arrival and Polarisation Parameters Direction Finding Techniques for Over-the-Horizon Radars Adaptive Fast Track Association for Small Samples in Distributed Multi-Sensor Systems Boundary-Aware Learning for Robust Automatic Modulation Recognition Based on Adaptive Pyramid Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1