Dylan Schlichting, Robert Hetland, C. Spencer Jones
{"title":"Numerical Mixing Suppresses Submesoscale Baroclinic Instabilities Over Sloping Bathymetry","authors":"Dylan Schlichting, Robert Hetland, C. Spencer Jones","doi":"10.1029/2024MS004321","DOIUrl":null,"url":null,"abstract":"<p>The impacts of spurious numerical salinity mixing <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({\\mathcal{M}}_{\\mathit{num}}\\right)$</annotation>\n </semantics></math> on the larger-scale flow and tracer fields are characterized using idealized simulations. The idealized model is motivated by realistic simulations of the Texas-Louisiana shelf and features oscillatory near-inertial wind forcing. <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{num}}$</annotation>\n </semantics></math> can exceed the physical mixing from the turbulence closure <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>phy</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({\\mathcal{M}}_{\\mathit{phy}}\\right)$</annotation>\n </semantics></math> in frontal zones and within the mixed layer. This suggests that simulated mixing processes in frontal zones are driven largely by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{num}}$</annotation>\n </semantics></math>. Near-inertial alongshore wind stress amplitude is varied to identify a base case that maximizes the ratio of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{num}}$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>phy</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{phy}}$</annotation>\n </semantics></math> in simulations with no prescribed horizontal mixing. We then test the sensitivity of the base case with three tracer advection schemes (MPDATA, U3HC4, and HSIMT) and conduct ensemble runs with perturbed bathymetry. Instability growth is evaluated using the volume-integrated eddy kinetic energy <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>E</mi>\n <mi>K</mi>\n <mi>E</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(EKE)$</annotation>\n </semantics></math> and available potential energy <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>A</mi>\n <mi>P</mi>\n <mi>E</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(APE)$</annotation>\n </semantics></math>. While all schemes have similar total mixing, the HSIMT simulations have over double the volume-integrated <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{num}}$</annotation>\n </semantics></math> and 20% less <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>phy</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{phy}}$</annotation>\n </semantics></math> relative to other schemes, which suppresses the release of <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mi>P</mi>\n <mi>E</mi>\n </mrow>\n <annotation> $APE$</annotation>\n </semantics></math> and reduces the <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>K</mi>\n <mi>E</mi>\n </mrow>\n <annotation> $EKE$</annotation>\n </semantics></math> by roughly 25%. This results in reduced isohaline variability and steeper isopycnals, evidence that enhanced <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{num}}$</annotation>\n </semantics></math> suppresses instability growth. Differences in <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>K</mi>\n <mi>E</mi>\n </mrow>\n <annotation> $EKE$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mi>P</mi>\n <mi>E</mi>\n </mrow>\n <annotation> $APE$</annotation>\n </semantics></math> between the MPDATA and U3HC4 simulations are marginal. However, the U3HC4 simulations have 25% more <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{num}}$</annotation>\n </semantics></math>. Experiments with variable horizontal viscosity and diffusivity coefficients show that small amounts of prescribed horizontal mixing improve the representation of the ocean state for all advection schemes by reducing the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{num}}$</annotation>\n </semantics></math> and increasing the <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>K</mi>\n <mi>E</mi>\n </mrow>\n <annotation> $EKE$</annotation>\n </semantics></math>.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004321","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004321","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The impacts of spurious numerical salinity mixing on the larger-scale flow and tracer fields are characterized using idealized simulations. The idealized model is motivated by realistic simulations of the Texas-Louisiana shelf and features oscillatory near-inertial wind forcing. can exceed the physical mixing from the turbulence closure in frontal zones and within the mixed layer. This suggests that simulated mixing processes in frontal zones are driven largely by . Near-inertial alongshore wind stress amplitude is varied to identify a base case that maximizes the ratio of to in simulations with no prescribed horizontal mixing. We then test the sensitivity of the base case with three tracer advection schemes (MPDATA, U3HC4, and HSIMT) and conduct ensemble runs with perturbed bathymetry. Instability growth is evaluated using the volume-integrated eddy kinetic energy and available potential energy . While all schemes have similar total mixing, the HSIMT simulations have over double the volume-integrated and 20% less relative to other schemes, which suppresses the release of and reduces the by roughly 25%. This results in reduced isohaline variability and steeper isopycnals, evidence that enhanced suppresses instability growth. Differences in and between the MPDATA and U3HC4 simulations are marginal. However, the U3HC4 simulations have 25% more . Experiments with variable horizontal viscosity and diffusivity coefficients show that small amounts of prescribed horizontal mixing improve the representation of the ocean state for all advection schemes by reducing the and increasing the .
采用理想化的模拟方法,研究了伪数值盐度混合M num $\left({\mathcal{M}}_{\mathit{num}}\right)$对大尺度流场和示踪场的影响。理想化的模式是基于对德克萨斯-路易斯安那大陆架的真实模拟,并以振荡的近惯性风强迫为特征。M num ${\mathcal{M}}_{\mathit{num}}$可以超过湍流闭包M phy的物理混合$\left({\mathcal{M}}_{\mathit{phy}}\right)$在额区和混合层内。这表明模拟的锋区混合过程主要由M num ${\mathcal{M}}_{\mathit{num}}$驱动。通过改变近惯性岸线风应力幅值来确定使M num ${\mathcal{M}}_{\mathit{num}}$与M之比最大化的基本情况phy ${\mathcal{M}}_{\mathit{phy}}$的模拟,没有规定的水平混合。然后,我们用三种示踪平流方案(MPDATA、U3HC4和HSIMT)测试了基本情况的灵敏度,并使用摄动测深法进行了综合运行。利用体积积分涡流动能(EKE)$和有效势能(ap)$来评估不稳定增长E)$(猿)$。虽然所有方案都有类似的总混合,HSIMT模拟的体积集成M num ${\mathcal{M}}_{\mathit{num}}$和M phy减少了20%以上${\ mathit{M}}_{\mathit{phy}}$相对于其他方案,这抑制了AP $APE$的释放,使EK $EKE$降低了大约25%。这导致等盐变率降低,等盐线变陡,证明M num ${\mathcal{M}}_{\mathit{num}}$的增强抑制了不稳定性的增长。MPDATA和U3HC4模拟之间的EKE$ EKE$和APE$ APE$的差异是微乎其微的。 然而,U3HC4模拟有25%的M num ${\mathcal{M}}_{\mathit{num}}$。变化水平黏度和扩散系数的实验表明,少量规定的水平混合通过减小M num ${\mathcal{M}}_{\mathit{num}}$和增大M {\mathit{num}}$来改善所有平流方案的海洋状态表示我爱我爱我爱我。
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.