Andreia Saragoça, Henrique Canha, Carla M. R. Varanda, Patrick Materatski, Ana Isabel Cordeiro, José Gama
{"title":"Lactic acid bacteria: A sustainable solution against phytopathogenic agents","authors":"Andreia Saragoça, Henrique Canha, Carla M. R. Varanda, Patrick Materatski, Ana Isabel Cordeiro, José Gama","doi":"10.1111/1758-2229.70021","DOIUrl":null,"url":null,"abstract":"<p>Biological control agents (BCAs) are beneficial living organisms used in plant protection to control pathogens sustainably. Lactic acid bacteria (LAB) have gained attention in biopesticides due to their safety as recognized by the Food and Drug Administration. These bacteria possess antifungal properties, demonstrating inhibitory effects through nutrient competition or the production of antimicrobial metabolites. Numerous <i>Lactobacillus</i> species have shown the ability to inhibit pathogenic microorganisms, primarily through acid production. The organic acids secreted by LAB reduce the pH of the medium, creating a hostile environment for microorganisms. These organic acids are a primary inhibition mechanism of LAB. This article reviews several studies on LAB as BCAs, focusing on their inhibition modes. Additionally, it discusses the limitations and future challenges of using LAB to control phytopathogens for sustainable agriculture.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70021","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Biological control agents (BCAs) are beneficial living organisms used in plant protection to control pathogens sustainably. Lactic acid bacteria (LAB) have gained attention in biopesticides due to their safety as recognized by the Food and Drug Administration. These bacteria possess antifungal properties, demonstrating inhibitory effects through nutrient competition or the production of antimicrobial metabolites. Numerous Lactobacillus species have shown the ability to inhibit pathogenic microorganisms, primarily through acid production. The organic acids secreted by LAB reduce the pH of the medium, creating a hostile environment for microorganisms. These organic acids are a primary inhibition mechanism of LAB. This article reviews several studies on LAB as BCAs, focusing on their inhibition modes. Additionally, it discusses the limitations and future challenges of using LAB to control phytopathogens for sustainable agriculture.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.