Atmospheric Pressure Rivalry Between the Arctic and Northern Pacific: Implications for Alaskan Climate Variability

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES International Journal of Climatology Pub Date : 2024-10-23 DOI:10.1002/joc.8638
Igor V. Polyakov, Thomas J. Ballinger, James E. Overland, Stephen J. Vavrus, Seth L. Danielson, Rick Lader, Uma S. Bhatt, Amy S. Hendricks, Franz J. Mueter
{"title":"Atmospheric Pressure Rivalry Between the Arctic and Northern Pacific: Implications for Alaskan Climate Variability","authors":"Igor V. Polyakov,&nbsp;Thomas J. Ballinger,&nbsp;James E. Overland,&nbsp;Stephen J. Vavrus,&nbsp;Seth L. Danielson,&nbsp;Rick Lader,&nbsp;Uma S. Bhatt,&nbsp;Amy S. Hendricks,&nbsp;Franz J. Mueter","doi":"10.1002/joc.8638","DOIUrl":null,"url":null,"abstract":"<p>Located at the confluence of the Arctic and North Pacific and with Alaska at its heart, the Pacific Arctic Region (PAR) is a unique and interconnected regional climate system. Significant climatic changes in the PAR are described by a novel, mobile monthly Alaska Arctic Front (AAF) index, which is defined by sea level pressure differences between the migratory cores of the Beaufort High and Aleutian Low. Regional climate variability associated with the AAF shows prominent decadal signatures that are driven by the opposing effects of the North Pacific and the Arctic atmospheric pressure fields. Low AAF (negative phase) is dominated by North Pacific forcing, whereas high AAF (positive phase) is dominated by Arctic atmospheric processes. The recent (2011–2021) negative AAF phase, which is associated with the westward displacement of Aleutian Low explaining stronger northward winds and enhanced water transport northward through Bering Strait, is conducive to increased oceanic heat and freshwater content, reduced regional sea ice cover in the PAR, and to the expansion of Pacific species into the Arctic. These factors are all indicators of the Pacification of the Arctic Ocean, a key feature of climate change related to progression of anomalous Pacific water masses and biota into the polar basins. It is not yet clear if or when the recent phase of decadal variability will change and alter the rate of Pacification of the Arctic climate system.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 15","pages":"5339-5357"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/joc.8638","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8638","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Located at the confluence of the Arctic and North Pacific and with Alaska at its heart, the Pacific Arctic Region (PAR) is a unique and interconnected regional climate system. Significant climatic changes in the PAR are described by a novel, mobile monthly Alaska Arctic Front (AAF) index, which is defined by sea level pressure differences between the migratory cores of the Beaufort High and Aleutian Low. Regional climate variability associated with the AAF shows prominent decadal signatures that are driven by the opposing effects of the North Pacific and the Arctic atmospheric pressure fields. Low AAF (negative phase) is dominated by North Pacific forcing, whereas high AAF (positive phase) is dominated by Arctic atmospheric processes. The recent (2011–2021) negative AAF phase, which is associated with the westward displacement of Aleutian Low explaining stronger northward winds and enhanced water transport northward through Bering Strait, is conducive to increased oceanic heat and freshwater content, reduced regional sea ice cover in the PAR, and to the expansion of Pacific species into the Arctic. These factors are all indicators of the Pacification of the Arctic Ocean, a key feature of climate change related to progression of anomalous Pacific water masses and biota into the polar basins. It is not yet clear if or when the recent phase of decadal variability will change and alter the rate of Pacification of the Arctic climate system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
北极和北太平洋之间的大气压力竞争:对阿拉斯加气候变化的影响
太平洋北极地区(PAR)位于北极和北太平洋的交汇处,以阿拉斯加为中心,是一个独特而相互关联的区域气候系统。PAR中显著的气候变化由一个新颖的、可移动的阿拉斯加北极锋(AAF)月指数来描述,该指数由波弗特高压和阿留申低压迁移核心之间的海平面压力差来定义。与AAF相关的区域气候变率显示出显著的年代际特征,这是由北太平洋和北极大气压力场的相反影响驱动的。低AAF(负相)主要受北太平洋强迫的影响,而高AAF(正相)主要受北极大气过程的影响。最近(2011-2021)的负AAF期,与阿留申低压向西移动有关,解释了更强的北风和通过白令海峡向北的水运增强,有利于增加海洋热量和淡水含量,减少PAR区域海冰覆盖,并有利于太平洋物种向北极扩张。这些因素都是北冰洋平定的指标,北冰洋平定是气候变化的一个关键特征,与异常太平洋水团和生物群向极地盆地的进展有关。目前尚不清楚最近的年代际变率是否或何时会改变并改变北极气候系统的平稳化速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
期刊最新文献
Issue Information Issue Information Time Series Clustering of Sea Surface Temperature in the Mediterranean and Black Sea Marine System An Elevated Influence of the Low-Latitude Drivers on the East Asian Winter Monsoon After Around 1990 Improvement in the Low Temperature Prediction Skill During Cold Winters Over the Mid–High Latitudes of Eurasia in CFSv2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1