Multi-channel masked autoencoder and comprehensive evaluations for reconstructing 12-lead ECG from arbitrary single-lead ECG

Jiarong Chen, Wanqing Wu, Tong Liu, Shenda Hong
{"title":"Multi-channel masked autoencoder and comprehensive evaluations for reconstructing 12-lead ECG from arbitrary single-lead ECG","authors":"Jiarong Chen, Wanqing Wu, Tong Liu, Shenda Hong","doi":"10.1038/s44325-024-00036-4","DOIUrl":null,"url":null,"abstract":"Electrocardiogram (ECG) has emerged as a widely accepted diagnostic instrument for cardiovascular diseases (CVD). The standard clinical 12-lead ECG configuration causes considerable inconvenience and discomfort, while wearable devices offers a more practical alternative. To reduce information gap between 12-lead ECG and single-lead ECG, this study proposes a multi-channel masked autoencoder (MCMA) for reconstructing 12-Lead ECG from arbitrary single-lead ECG, and a comprehensive evaluation benchmark, ECGGenEval, encompass the signal-level, feature-level, and diagnostic-level evaluations. MCMA can achieve the state-of-the-art performance. In the signal-level evaluation, the mean square errors of 0.0175 and 0.0654, Pearson correlation coefficients of 0.7772 and 0.7287. In the feature-level evaluation, the average standard deviation of the mean heart rate across the generated 12-lead ECG is 1.0481, the coefficient of variation is 1.58%, and the range is 3.2874. In the diagnostic-level evaluation, the average F1-score with two generated 12-lead ECG from different single-lead ECG are 0.8233 and 0.8410.","PeriodicalId":501706,"journal":{"name":"npj Cardiovascular Health","volume":" ","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44325-024-00036-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Cardiovascular Health","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44325-024-00036-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocardiogram (ECG) has emerged as a widely accepted diagnostic instrument for cardiovascular diseases (CVD). The standard clinical 12-lead ECG configuration causes considerable inconvenience and discomfort, while wearable devices offers a more practical alternative. To reduce information gap between 12-lead ECG and single-lead ECG, this study proposes a multi-channel masked autoencoder (MCMA) for reconstructing 12-Lead ECG from arbitrary single-lead ECG, and a comprehensive evaluation benchmark, ECGGenEval, encompass the signal-level, feature-level, and diagnostic-level evaluations. MCMA can achieve the state-of-the-art performance. In the signal-level evaluation, the mean square errors of 0.0175 and 0.0654, Pearson correlation coefficients of 0.7772 and 0.7287. In the feature-level evaluation, the average standard deviation of the mean heart rate across the generated 12-lead ECG is 1.0481, the coefficient of variation is 1.58%, and the range is 3.2874. In the diagnostic-level evaluation, the average F1-score with two generated 12-lead ECG from different single-lead ECG are 0.8233 and 0.8410.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从任意单导联心电图重构12导联心电图的多通道掩码自编码器及综合评价
心电图(ECG)已成为一种被广泛接受的心血管疾病(CVD)诊断工具。标准的临床12导联心电图配置会带来相当大的不便和不适,而可穿戴设备提供了更实用的替代方案。为了缩小12导联心电图与单导联心电图之间的信息差距,本研究提出了一种多通道掩面自编码器(MCMA),用于从任意单导联心电图重构12导联心电图,并提出了一个综合评估基准ECGGenEval,包括信号级、特征级和诊断级评估。MCMA可以达到最先进的性能。在信号水平评价中,均方误差分别为0.0175和0.0654,Pearson相关系数分别为0.7772和0.7287。在特征级评价中,生成的12导联心电图平均心率的平均标准差为1.0481,变异系数为1.58%,极差为3.2874。在诊断水平评价中,不同单导联心电图生成两组12导联心电图的平均f1评分分别为0.8233和0.8410。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A systematic review to identify assessment instruments for social isolation or loneliness in adults with heart failure. The association between proton pump inhibitors and the risk of gastrointestinal bleeding in oral anticoagulants users. Mechanisms and implications of vascular-homing CD8 T cells in atherosclerosis. Leveraging AI-enhanced digital health with consumer devices for scalable cardiovascular screening, prediction, and monitoring. Machine learning based, subject-specific, gender and race independent, non-invasive estimation of the arterial blood pressure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1