Corrigendum to “HIDYM: A high-resolution gross primary productivity and dynamic harvest index based crop yield mapper” [Remote Sensing of Environment, 2024, 114301]

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2024-12-04 DOI:10.1016/j.rse.2024.114548
Weiguo Yu , Dong Li , Hengbiao Zheng , Xia Yao , Yan Zhu , Weixing Cao , Lin Qiu , Tao Cheng , Yongguang Zhang , Yanlian Zhou
{"title":"Corrigendum to “HIDYM: A high-resolution gross primary productivity and dynamic harvest index based crop yield mapper” [Remote Sensing of Environment, 2024, 114301]","authors":"Weiguo Yu , Dong Li , Hengbiao Zheng , Xia Yao , Yan Zhu , Weixing Cao , Lin Qiu , Tao Cheng , Yongguang Zhang , Yanlian Zhou","doi":"10.1016/j.rse.2024.114548","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"318 ","pages":"Article 114548"},"PeriodicalIF":11.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724005741","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“HIDYM:基于总初级生产力和动态收获指数的高分辨率作物产量制图器”的勘误表[遥感环境,2024,114301]
作者感到遗憾的是,在文章中发现了冬小麦产量图中的几个错误。这些错误是由于从谷歌地球引擎云平台导出地图过程中的问题引起的。它们不影响文章中提出的散点图和相关产量预测的准确性,因为准确性是由地块级遥感数据和现场测量确定的,而不是导出的产量图。更正后的图13E&;F如下图所示:下载:下载高分辨率图片(524KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Training sensor-agnostic deep learning models for remote sensing: Achieving state-of-the-art cloud and cloud shadow identification with OmniCloudMask Estuarine temperature variability: Integrating four decades of remote sensing observations and in-situ sea surface measurements Deriving leaf-scale chlorophyll index (CIleaf) from canopy reflectance by correcting for the canopy multiple scattering based on spectral invariant theory Mapping the surface properties of the Asal-Ghoubbet rift by massive inversion of the Hapke model on Pleiades multiangular images Optimising fire severity mapping using pixel-based image compositing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1