A new mathematical solution of convection-dispersion equation to describe solute transport in heterogeneous soils

Xiufu Shuai
{"title":"A new mathematical solution of convection-dispersion equation to describe solute transport in heterogeneous soils","authors":"Xiufu Shuai","doi":"10.1002/saj2.20794","DOIUrl":null,"url":null,"abstract":"<p>There was a long-time debate about the validation of the convection-dispersion equation (CDE) and its replacement with the well-known convective lognormal transfer function model (CLT) to describe solute transport in a heterogeneous soil with uniformity at the longitudinal water flow direction and nonuniformity at the transverse direction. The objective of this study is to prove that the CDE is valid and almost identical to the CLT. Gamma probability density function (pdf) was initially assumed in this study to describe the distribution of pore-water velocity across capillary tubes in a heterogeneous soil. The capillary bundle model was used to describe solute transport without transverse solute mixing between adjacent tubes. The inverse-gamma function, a new mathematical solution of the CDE differential equation with scale-dependent dispersivity, was initially derived from the capillary bundle model and the gamma pdf. The only difference between the inverse-gamma function and the CLT is that lognormal pdf of pore-water velocity is assumed in the CLT while the two pdfs are close to each other. The inverse-gamma function and the CLT were tested with the published data from the miscible displacement experiments on the two repacked soils with different aggregate sizes. Results show that both the inverse-gamma function and the CLT fit the measured breakthrough curves in the miscible displacement experiments. The estimates of the squared coefficient of variation of the pore-water velocity in the gamma pdf were 0.314 and 0.0582 for the two soils, and they were consistent with the lognormal pdf in the CLT.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings - Soil Science Society of America","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/saj2.20794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There was a long-time debate about the validation of the convection-dispersion equation (CDE) and its replacement with the well-known convective lognormal transfer function model (CLT) to describe solute transport in a heterogeneous soil with uniformity at the longitudinal water flow direction and nonuniformity at the transverse direction. The objective of this study is to prove that the CDE is valid and almost identical to the CLT. Gamma probability density function (pdf) was initially assumed in this study to describe the distribution of pore-water velocity across capillary tubes in a heterogeneous soil. The capillary bundle model was used to describe solute transport without transverse solute mixing between adjacent tubes. The inverse-gamma function, a new mathematical solution of the CDE differential equation with scale-dependent dispersivity, was initially derived from the capillary bundle model and the gamma pdf. The only difference between the inverse-gamma function and the CLT is that lognormal pdf of pore-water velocity is assumed in the CLT while the two pdfs are close to each other. The inverse-gamma function and the CLT were tested with the published data from the miscible displacement experiments on the two repacked soils with different aggregate sizes. Results show that both the inverse-gamma function and the CLT fit the measured breakthrough curves in the miscible displacement experiments. The estimates of the squared coefficient of variation of the pore-water velocity in the gamma pdf were 0.314 and 0.0582 for the two soils, and they were consistent with the lognormal pdf in the CLT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A portable low-cost incubation chamber for real-time characterization of soil respiration Novel slow-release fertilizer promotes nitrogen circularity while increasing soil organic carbon Erratum to: Effects of maize residue and biochar applications on soil δ13C and organic carbon sources in a subtropical paddy rice ecosystem Microbial inocula enhance effects of biochar amendments on crop productivity, soil health, and microbial communities: A meta-analysis Comparison of laser diffractometry and pipetting methods for particle size determination: A pilot study on the implications of result discrepancies on soil classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1