Unlocking Osseointegration: Surface Engineering Strategies for Enhanced Dental Implant Integration.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2025-01-13 Epub Date: 2024-12-02 DOI:10.1021/acsbiomaterials.4c01178
Pankaj Sharma, Vedante Mishra, Sumit Murab
{"title":"Unlocking Osseointegration: Surface Engineering Strategies for Enhanced Dental Implant Integration.","authors":"Pankaj Sharma, Vedante Mishra, Sumit Murab","doi":"10.1021/acsbiomaterials.4c01178","DOIUrl":null,"url":null,"abstract":"<p><p>Tooth loss is a prevalent problem faced by individuals of all ages across the globe. Various biomaterials, such as metals, bioceramics, polymers, composites of ceramics and polymers, etc., have been used for the manufacturing of dental implants. The success of a dental implant primarily depends on its osseointegration rate. The current surface modification techniques fail to imbibe the basics of tooth development, which can impart better mineralization and osseointegration. This can be improved by developing an understanding of the developmental pathways of dental tissue. Stimulating the correct signaling pathways through inductive material systems can bring about a paradigm shift in dental implant materials. The current review focuses on the developmental pathway and mineralization process that happen during tooth formation and how surface modifications can help in biomimetic mineralization, thereby enhancing osseointegration. We further describe the effect of dental implant surface modifications on mineralization, osteoinduction, and osseointegration; both <i>in vitro</i> and <i>in vivo</i>. The review will help us to understand the natural process of teeth development and mineralization and how the surface properties of dental implants can be further improved to mimic teeth development, in turn increasing osseointegration.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"67-94"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01178","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Tooth loss is a prevalent problem faced by individuals of all ages across the globe. Various biomaterials, such as metals, bioceramics, polymers, composites of ceramics and polymers, etc., have been used for the manufacturing of dental implants. The success of a dental implant primarily depends on its osseointegration rate. The current surface modification techniques fail to imbibe the basics of tooth development, which can impart better mineralization and osseointegration. This can be improved by developing an understanding of the developmental pathways of dental tissue. Stimulating the correct signaling pathways through inductive material systems can bring about a paradigm shift in dental implant materials. The current review focuses on the developmental pathway and mineralization process that happen during tooth formation and how surface modifications can help in biomimetic mineralization, thereby enhancing osseointegration. We further describe the effect of dental implant surface modifications on mineralization, osteoinduction, and osseointegration; both in vitro and in vivo. The review will help us to understand the natural process of teeth development and mineralization and how the surface properties of dental implants can be further improved to mimic teeth development, in turn increasing osseointegration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解锁骨整合:增强牙种植体整合的表面工程策略。
牙齿脱落是全球各个年龄段的人都面临的一个普遍问题。各种生物材料,如金属、生物陶瓷、聚合物、陶瓷和聚合物的复合材料等,已被用于制造牙种植体。植牙的成功与否主要取决于植牙的骨整合率。目前的表面修饰技术无法吸收牙齿发育的基础,而这些基础可以提供更好的矿化和骨整合。这可以通过发展对牙齿组织发育途径的理解来改善。通过诱导材料系统刺激正确的信号通路可以带来牙种植材料的范式转变。目前的综述主要集中在牙齿形成过程中的发育途径和矿化过程,以及表面修饰如何帮助仿生矿化,从而增强骨整合。我们进一步描述了牙种植体表面修饰对矿化、骨诱导和骨整合的影响;无论是体外还是体内。该综述将有助于我们了解牙齿发育和矿化的自然过程,以及如何进一步改善种植体的表面特性以模拟牙齿发育,从而增加骨整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Biomimetic Air-Lifted Organ Culture System with a Protective Coverage Membrane for Full-Thickness Corneal Preservation. Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications. Co-Delivery of Glycyrrhizin and Paclitaxel via Gelatin-Based Core-Shell Nanoparticles Ameliorates 1,2-Dimethylhydrazine-Induced Precancerous Lesions in Colon. Preparation of Octacalcium Phosphate Thin Film with Exposing Reactive Crystalline Plane in Biological Fluid. 3D-Printed PCL Scaffolds Loaded with bFGF and BMSCs Enhance Tendon-Bone Healing in Rat Rotator Cuff Tears by Immunomodulation and Osteogenesis Promotion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1