Dynamic Time-Programming Circuit for Encoding Information, Programming Dissipative Systems, and Delaying Release of Cargo.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-12-16 Epub Date: 2024-12-04 DOI:10.1021/acsabm.4c01366
Luojia Wang, Zhongzhong Wang, Wang Luo, Heping Zhao, Guoming Xie
{"title":"Dynamic Time-Programming Circuit for Encoding Information, Programming Dissipative Systems, and Delaying Release of Cargo.","authors":"Luojia Wang, Zhongzhong Wang, Wang Luo, Heping Zhao, Guoming Xie","doi":"10.1021/acsabm.4c01366","DOIUrl":null,"url":null,"abstract":"<p><p>Living systems have some of the most sophisticated reaction circuits in the world, realizing many incredibly complex functions through a variety of simple molecular reactions, in which the most notable feature that distinguishes them from artificial molecular reaction networks is the precise control of reaction times and programmable expression. Here, we exploit the hydrolysis-directed nature of λ exonuclease and the programmed responses of the dynamic nanotechnology of nucleic acids to construct a simple, complete, and powerful set of temporally programmed circuits. This system can arbitrarily regulate the degradation rate of the blocker, thereby delaying the nucleic acid chain substitution reaction with less signal leakage. In addition, the powerful dynamic reaction network of nucleic acids enabled us to control the programmed execution of a wide range of reactions in different fields. We have developed a simple strategy to introduce precise control of the time dimension into nucleic acid reaction circuits, which greatly enriches the functionality and applicability of the reaction programs, which can be easily used as timers, compilers, converters, etc. The simplicity, precision, stability, and versatility of such dynamic temporal programming circuits greatly expand the potential of artificial molecular reaction networks for more complex practical applications in biochemistry and molecular biology.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"8599-8607"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Living systems have some of the most sophisticated reaction circuits in the world, realizing many incredibly complex functions through a variety of simple molecular reactions, in which the most notable feature that distinguishes them from artificial molecular reaction networks is the precise control of reaction times and programmable expression. Here, we exploit the hydrolysis-directed nature of λ exonuclease and the programmed responses of the dynamic nanotechnology of nucleic acids to construct a simple, complete, and powerful set of temporally programmed circuits. This system can arbitrarily regulate the degradation rate of the blocker, thereby delaying the nucleic acid chain substitution reaction with less signal leakage. In addition, the powerful dynamic reaction network of nucleic acids enabled us to control the programmed execution of a wide range of reactions in different fields. We have developed a simple strategy to introduce precise control of the time dimension into nucleic acid reaction circuits, which greatly enriches the functionality and applicability of the reaction programs, which can be easily used as timers, compilers, converters, etc. The simplicity, precision, stability, and versatility of such dynamic temporal programming circuits greatly expand the potential of artificial molecular reaction networks for more complex practical applications in biochemistry and molecular biology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
DNA-Assisted CRISPR-Cas12a Enhanced Fluorescent Assay for Protein Detection in Complicated Matrices. Stem Cell-Laden Engineered Patch: Advances and Applications in Tissue Regeneration. Ultrasound-Activated Near-Infrared-II Afterglow Luminescence for Precise Cancer Imaging. Liposomal Encapsulation of Chlorambucil with a Terpyridine-Based, Glutathione-Targeted Optical Probe Facilitates Cell Entry and Cancer Cell Death. Ultrafast Microwave-Synthesized 2D/1D MnO2/Carbon Nanotube Hybrid for Bilirubin Detection in Simulated Blood Serum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1