Lenitza M Nieves, Emily K Berkow, Katherine J Mossburg, Nathaniel H O, Kristen C Lau, Derick N Rosario, Priyash Singh, Xingjian Zhong, Andrew D A Maidment, David P Cormode
{"title":"Renally Excretable Molybdenum Disulfide Nanoparticles as Contrast Agents for Dual-Energy Mammography and Computed Tomography.","authors":"Lenitza M Nieves, Emily K Berkow, Katherine J Mossburg, Nathaniel H O, Kristen C Lau, Derick N Rosario, Priyash Singh, Xingjian Zhong, Andrew D A Maidment, David P Cormode","doi":"10.1021/acs.bioconjchem.4c00508","DOIUrl":null,"url":null,"abstract":"<p><p>Compared with conventional mammography, contrast-enhanced dual-energy mammography (DEM) can improve tumor detection for people with dense breasts. However, currently available iodine-based contrast agents have several drawbacks such as their contraindication for use with renal insufficiency, high-dose requirement, and suboptimal contrast production. Molybdenum disulfide nanoparticles (MoS<sub>2</sub> NPs) have been shown to attenuate X-rays due to molybdenum's relatively high atomic number while having good biocompatibility. However, work exploring their use as X-ray contrast agents has been limited. In this study, we have developed a novel aqueous synthesis yielding ultrasmall, 2 nm MoS<sub>2</sub> NPs with various small molecule coatings, including glutathione (GSH), penicillamine, and 2-mercaptopropionic acid (2MPA). These nanoparticles were shown to have low in vitro cytotoxicity when tested with various cell lines at concentrations up to 1 mg/mL. For the first time, these particles were shown to generate clinically relevant contrast in DEM. In DEM, MoS<sub>2</sub> NPs generated higher contrast than iopamidol, a commercially available X-ray contrast agent, while also generating substantial contrast in CT. Moreover, MoS<sub>2</sub> NPs demonstrated rapid elimination in vivo, mitigating long-term toxicity concerns. Together, the results presented here suggest the potential utility of MoS<sub>2</sub> NPs as a dual-modality X-ray contrast agent for DEM and CT.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00508","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Compared with conventional mammography, contrast-enhanced dual-energy mammography (DEM) can improve tumor detection for people with dense breasts. However, currently available iodine-based contrast agents have several drawbacks such as their contraindication for use with renal insufficiency, high-dose requirement, and suboptimal contrast production. Molybdenum disulfide nanoparticles (MoS2 NPs) have been shown to attenuate X-rays due to molybdenum's relatively high atomic number while having good biocompatibility. However, work exploring their use as X-ray contrast agents has been limited. In this study, we have developed a novel aqueous synthesis yielding ultrasmall, 2 nm MoS2 NPs with various small molecule coatings, including glutathione (GSH), penicillamine, and 2-mercaptopropionic acid (2MPA). These nanoparticles were shown to have low in vitro cytotoxicity when tested with various cell lines at concentrations up to 1 mg/mL. For the first time, these particles were shown to generate clinically relevant contrast in DEM. In DEM, MoS2 NPs generated higher contrast than iopamidol, a commercially available X-ray contrast agent, while also generating substantial contrast in CT. Moreover, MoS2 NPs demonstrated rapid elimination in vivo, mitigating long-term toxicity concerns. Together, the results presented here suggest the potential utility of MoS2 NPs as a dual-modality X-ray contrast agent for DEM and CT.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.