{"title":"Development of a Versatile Plant-Derived Mitochondrial Targeting Sequence Based on a Reporter Protein Sorting Analysis and Biological Information.","authors":"Naoya Abe, Masaki Odahara, Shamitha Rao Morey, Keiji Numata","doi":"10.1021/acschembio.4c00625","DOIUrl":null,"url":null,"abstract":"<p><p>Methods for the delivery of exogenous substances to specific organelles are important because each organelle functions according to its own role. Specifically, mitochondria play an important role in energy production. Recently, plant mitochondrial transformation via delivery methods to mitochondria has been actively researched. Mitochondrial targeting sequences (MTSs) are essential for transporting bioactive molecules, such as nucleic acids, to mitochondria. However, the selectivity and efficacy of MTSs as carrier molecules in plants are not yet sufficient. In this study, we developed an effective MTS in plants via a quantitative comparison of the targeting functions of several MTSs. The presequence of HSP60 from <i>Nicotiana tabacum</i>, which is highly similar to that of several other model plants, showed high mitochondrial-targeting ability among the MTSs tested. This result suggests the applicability of the HSP60 presequence for MTSs in various plants. We further investigated this HSP60 presequence through stepwise shortening on the basis of secondary structure prediction, aiming to simplify synthesis and increase the solubility of the peptides. As shown by assessment of the mitochondrial targeting ability, the 15 residues from the N-terminus of the HSP60 presequence for the MTS, which is particularly conserved among various model plants, retained a targeting efficacy comparable to that of the full-length HSP60 presequence. This developed sequence from the HSP60 sequence is a promising MTS for transfection into plant mitochondria.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00625","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Methods for the delivery of exogenous substances to specific organelles are important because each organelle functions according to its own role. Specifically, mitochondria play an important role in energy production. Recently, plant mitochondrial transformation via delivery methods to mitochondria has been actively researched. Mitochondrial targeting sequences (MTSs) are essential for transporting bioactive molecules, such as nucleic acids, to mitochondria. However, the selectivity and efficacy of MTSs as carrier molecules in plants are not yet sufficient. In this study, we developed an effective MTS in plants via a quantitative comparison of the targeting functions of several MTSs. The presequence of HSP60 from Nicotiana tabacum, which is highly similar to that of several other model plants, showed high mitochondrial-targeting ability among the MTSs tested. This result suggests the applicability of the HSP60 presequence for MTSs in various plants. We further investigated this HSP60 presequence through stepwise shortening on the basis of secondary structure prediction, aiming to simplify synthesis and increase the solubility of the peptides. As shown by assessment of the mitochondrial targeting ability, the 15 residues from the N-terminus of the HSP60 presequence for the MTS, which is particularly conserved among various model plants, retained a targeting efficacy comparable to that of the full-length HSP60 presequence. This developed sequence from the HSP60 sequence is a promising MTS for transfection into plant mitochondria.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.