Enhanced Cycling Stability of Al-Doped Li1.20Mn0.52-x Al x Ni0.20Co0.08O2 as a Cathode Material for Li-Ion Batteries by a Supercritical-CO2-Assisted Method.

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-11-15 eCollection Date: 2024-11-26 DOI:10.1021/acsomega.4c05087
Ali Yalçın, Mehmet Oğuz Güler, Muslum Demir, Mehmet Gönen, Mesut Akgün
{"title":"Enhanced Cycling Stability of Al-Doped Li<sub>1.20</sub>Mn<sub>0.52-<i>x</i></sub> Al <sub><i>x</i></sub> Ni<sub>0.20</sub>Co<sub>0.08</sub>O<sub>2</sub> as a Cathode Material for Li-Ion Batteries by a Supercritical-CO<sub>2</sub>-Assisted Method.","authors":"Ali Yalçın, Mehmet Oğuz Güler, Muslum Demir, Mehmet Gönen, Mesut Akgün","doi":"10.1021/acsomega.4c05087","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium-rich layered oxide materials (Li-NMC) are considered a potential cathode material for next-generation batteries, thanks to their high theoretical specific capacity. Large potential drop and capacity loss after long cycles are the main obstacles to expanding commercial utilization of Li-NMC. In the past decade, great efforts have been made to overcome those issues of Li-NMCs. In this study, Al-doped Li<sub>1.20</sub>Mn<sub>0.52-<i>x</i></sub> Al <sub><i>x</i></sub> Ni<sub>0.20</sub>Co<sub>0.08</sub>O<sub>2</sub> cathode materials are for the first time synthesized by a supercritical-CO<sub>2</sub>-assisted method. Upon the electrochemical tests of Al-doped Li-rich NMCs, the optimal initial charge/discharge profile is obtained for the Li-NMC-Al02 cathode with 374.6/247.5 mAh/g compared with that of 320.7/235.1 mAh/g for the pristine Li-NMC-Al00 sample at the C/20 rate. In addition, the Li-NMC-Al02 cathode shows an enhanced rate-capability performance compared to the pristine sample at relatively low rates. When the current density is increased from C/10 to 3C, the charge/discharge capacity values of the Li-NMC-Al02 cathode are measured as 249.88/105.84 mAh/g. Last but not least, Li-NMC-Al02 demonstrates an excellent energy retention of 92.32%, which is notably higher than that of pristine Li-NMC-Al00 (86.4%) after 120 cycles at the C/20 rate. Overall, the present fabrication and doping strategy opens a new avenue for commercialization of Li-NMC cathode materials.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 47","pages":"46813-46821"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603393/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c05087","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-rich layered oxide materials (Li-NMC) are considered a potential cathode material for next-generation batteries, thanks to their high theoretical specific capacity. Large potential drop and capacity loss after long cycles are the main obstacles to expanding commercial utilization of Li-NMC. In the past decade, great efforts have been made to overcome those issues of Li-NMCs. In this study, Al-doped Li1.20Mn0.52-x Al x Ni0.20Co0.08O2 cathode materials are for the first time synthesized by a supercritical-CO2-assisted method. Upon the electrochemical tests of Al-doped Li-rich NMCs, the optimal initial charge/discharge profile is obtained for the Li-NMC-Al02 cathode with 374.6/247.5 mAh/g compared with that of 320.7/235.1 mAh/g for the pristine Li-NMC-Al00 sample at the C/20 rate. In addition, the Li-NMC-Al02 cathode shows an enhanced rate-capability performance compared to the pristine sample at relatively low rates. When the current density is increased from C/10 to 3C, the charge/discharge capacity values of the Li-NMC-Al02 cathode are measured as 249.88/105.84 mAh/g. Last but not least, Li-NMC-Al02 demonstrates an excellent energy retention of 92.32%, which is notably higher than that of pristine Li-NMC-Al00 (86.4%) after 120 cycles at the C/20 rate. Overall, the present fabrication and doping strategy opens a new avenue for commercialization of Li-NMC cathode materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Tumor-Targeted Magnetic Micelles for Magnetic Resonance Imaging, Drug Delivery, and Overcoming Multidrug Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1