{"title":"Unraveling the Anion Storage Properties of Manganese-Doped SrTiO<sub>3</sub>.","authors":"Dushyant K Sharma, Susanta S Roy, Binson Babu","doi":"10.1021/acsomega.4c08911","DOIUrl":null,"url":null,"abstract":"<p><p>Strontium titanate (STO), a cubic perovskite material, has gained recent attention as a supercapacitor active material with its pseudocapacitive energy storage attributed to anion intercalation. However, very few in-depth studies have been conducted to understand the anion storage properties of STO and its metal-doped derivative compounds. In this study, we explored the anion-insertion storage mechanism of Mn-doped strontium titanate (Mn-STO) compared to pristine STO. The polycrystalline Mn-STO, synthesized via solid-state reaction, showed 3-fold times higher electrochemical surface area and exhibited enhanced anion storage compared to pristine STO. Detailed anion kinetics and diffusion studies reveal that the anion storage in Mn-STO is dominated by the bulk diffusion-controlled pseudocapacitive process than in STO. Further, the supercapacitor fabricated with Mn-STO in a 3 M KOH aqueous electrolyte with 0.1 M MnSO<sub>4</sub> additives demonstrated excellent cycling stability, retaining 100% capacitance after 10,000 cycles, highlighting the potential of Mn-STO as an electrode material for supercapacitor applications.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 47","pages":"47332-47341"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603244/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c08911","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Strontium titanate (STO), a cubic perovskite material, has gained recent attention as a supercapacitor active material with its pseudocapacitive energy storage attributed to anion intercalation. However, very few in-depth studies have been conducted to understand the anion storage properties of STO and its metal-doped derivative compounds. In this study, we explored the anion-insertion storage mechanism of Mn-doped strontium titanate (Mn-STO) compared to pristine STO. The polycrystalline Mn-STO, synthesized via solid-state reaction, showed 3-fold times higher electrochemical surface area and exhibited enhanced anion storage compared to pristine STO. Detailed anion kinetics and diffusion studies reveal that the anion storage in Mn-STO is dominated by the bulk diffusion-controlled pseudocapacitive process than in STO. Further, the supercapacitor fabricated with Mn-STO in a 3 M KOH aqueous electrolyte with 0.1 M MnSO4 additives demonstrated excellent cycling stability, retaining 100% capacitance after 10,000 cycles, highlighting the potential of Mn-STO as an electrode material for supercapacitor applications.
钛酸锶(STO)是一种立方钙钛矿材料,由于其阴离子嵌入的赝电容储能特性,近年来作为一种超级电容器活性材料受到了广泛的关注。然而,对STO及其金属掺杂衍生物阴离子存储性能的深入研究却很少。在这项研究中,我们探索了mn掺杂钛酸锶(Mn-STO)与原始STO的阴离子插入存储机制。通过固相反应合成的多晶Mn-STO的电化学表面积是原始STO的3倍,阴离子存储能力增强。详细的阴离子动力学和扩散研究表明,Mn-STO中的阴离子存储主要由体扩散控制的伪电容过程控制,而在STO中则相反。此外,用Mn-STO在3 M KOH水溶液中与0.1 M MnSO4添加剂制备的超级电容器表现出优异的循环稳定性,在10,000次循环后保持100%的电容,突出了Mn-STO作为超级电容器电极材料的应用潜力。
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.