{"title":"Enhanced Mechanical and Dielectric Properties of Polyurethane Elastomers Containing Modified SiO<sub>2</sub>.","authors":"Miaomiao Qian, Xinru Wang, LiYang Yao, Yanchao Zhu","doi":"10.1021/acsomega.4c08565","DOIUrl":null,"url":null,"abstract":"<p><p>A novel and straightforward approach was employed to augment the dielectric constant and diminish the elastic modulus of polyurethane (PU) through the integration of modified silica (NSiO<sub>2</sub>) into the matrix. The incorporation of NSiO<sub>2</sub> resulted in the disruption of N-H/C=O hydrogen bonds between the PU chains, which subsequently led to an enhancement in the polarizability of the chains and an increase in the dielectric constant of PU. Concurrently, the addition of NSiO<sub>2</sub> resulted in a reduction of the elastic modulus (<i>Y</i>) of PU, which was attributed to the disruption of the hard domains of PU. The concurrent increase in the dielectric constant and reduction in <i>Y</i> give rise to a 60% enhancement in electromechanical sensitivity at 10<sup>3</sup> Hz. Furthermore, PU/NSiO<sub>2</sub> displays robust electrical breakdown strength due to the insulation properties of SiO<sub>2</sub>. At a NSiO<sub>2</sub> content of 3%, the breakdown strength of PU/NSiO<sub>2</sub>-3 increases to 145.12 MV/m, which is 1.6 times that of PU (91.03 MV/m). This study presents a novel approach to the design and preparation of PU with a high dielectric constant and enhanced electrical breakdown strength.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 47","pages":"47315-47323"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c08565","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel and straightforward approach was employed to augment the dielectric constant and diminish the elastic modulus of polyurethane (PU) through the integration of modified silica (NSiO2) into the matrix. The incorporation of NSiO2 resulted in the disruption of N-H/C=O hydrogen bonds between the PU chains, which subsequently led to an enhancement in the polarizability of the chains and an increase in the dielectric constant of PU. Concurrently, the addition of NSiO2 resulted in a reduction of the elastic modulus (Y) of PU, which was attributed to the disruption of the hard domains of PU. The concurrent increase in the dielectric constant and reduction in Y give rise to a 60% enhancement in electromechanical sensitivity at 103 Hz. Furthermore, PU/NSiO2 displays robust electrical breakdown strength due to the insulation properties of SiO2. At a NSiO2 content of 3%, the breakdown strength of PU/NSiO2-3 increases to 145.12 MV/m, which is 1.6 times that of PU (91.03 MV/m). This study presents a novel approach to the design and preparation of PU with a high dielectric constant and enhanced electrical breakdown strength.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.