Enhancement of the urea oxidation reaction by constructing hierarchical CoFe-PBA@S/NiFe-LDH nanoboxes with strengthened built-in electric fields

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-11-28 DOI:10.1016/j.jcis.2024.11.220
Zhuorun Wu , Huan Hu , Huimin Zhang , Anqi Huang , Xuehui Gao , Zhongwei Chen
{"title":"Enhancement of the urea oxidation reaction by constructing hierarchical CoFe-PBA@S/NiFe-LDH nanoboxes with strengthened built-in electric fields","authors":"Zhuorun Wu ,&nbsp;Huan Hu ,&nbsp;Huimin Zhang ,&nbsp;Anqi Huang ,&nbsp;Xuehui Gao ,&nbsp;Zhongwei Chen","doi":"10.1016/j.jcis.2024.11.220","DOIUrl":null,"url":null,"abstract":"<div><div>The slow kinetics of the oxygen evolution reaction (OER) present a major obstacle for efficient hydrogen production via water electrolysis. In contrast, the urea oxidation reaction (UOR), with its lower thermodynamic barrier, presents a promising alternative to OER. In this study, we designed and synthesized hierarchical CoFe- PBA@S/NiFe-LDH nanoboxes. Sulfur doping in nickel–iron layered double hydroxides (S/NiFe-LDH) introduces a weak built-in electric field (BIEF), which is further strengthened when combined with cobalt-iron Prussian blue analogue (CoFe-PBA) to form a heterojunction. This heterojunction created localized charge polarization at the interface, facilitating efficient electron transfer and reducing the adsorption energy of reaction intermediates, thereby significantly improving intrinsic catalytic activity. Under conditions of 1 M KOH and 0.33 M urea, the CoFe-PBA@S/NiFe-LDH catalyst achieved a current density of 50 mA cm<sup>−2</sup> at a relatively low potential of 1.321 V, accompanied by a low Tafel slope (53 mV dec<sup>−1</sup>). Additionally, it maintained stability at 30 mA cm<sup>−2</sup> for 40 h. This work provides vital insights for the strategic design of highly effective heterojunction catalysts for the UOR.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"Pages 324-331"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724027942","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The slow kinetics of the oxygen evolution reaction (OER) present a major obstacle for efficient hydrogen production via water electrolysis. In contrast, the urea oxidation reaction (UOR), with its lower thermodynamic barrier, presents a promising alternative to OER. In this study, we designed and synthesized hierarchical CoFe- PBA@S/NiFe-LDH nanoboxes. Sulfur doping in nickel–iron layered double hydroxides (S/NiFe-LDH) introduces a weak built-in electric field (BIEF), which is further strengthened when combined with cobalt-iron Prussian blue analogue (CoFe-PBA) to form a heterojunction. This heterojunction created localized charge polarization at the interface, facilitating efficient electron transfer and reducing the adsorption energy of reaction intermediates, thereby significantly improving intrinsic catalytic activity. Under conditions of 1 M KOH and 0.33 M urea, the CoFe-PBA@S/NiFe-LDH catalyst achieved a current density of 50 mA cm−2 at a relatively low potential of 1.321 V, accompanied by a low Tafel slope (53 mV dec−1). Additionally, it maintained stability at 30 mA cm−2 for 40 h. This work provides vital insights for the strategic design of highly effective heterojunction catalysts for the UOR.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建具有强化内建电场的层次化CoFe-PBA@S/NiFe-LDH纳米盒对尿素氧化反应的增强
析氧反应(OER)的缓慢动力学是水电解高效制氢的主要障碍。相比之下,尿素氧化反应(UOR)具有较低的热力学势垒,是替代OER的一种有希望的方法。在本研究中,我们设计并合成了层次化的CoFe- PBA@S/ nfe - ldh纳米盒。硫掺杂在镍铁层状双氢氧化物(S/NiFe-LDH)中引入弱内置电场(BIEF),当与钴铁普鲁士蓝类似物(fe - pba)结合形成异质结时,该电场进一步增强。这种异质结在界面处产生了局域电荷极化,促进了高效的电子转移,降低了反应中间体的吸附能,从而显著提高了本征催化活性。在KOH浓度为1 M、尿素浓度为0.33 M的条件下,CoFe-PBA@S/ nfe - ldh催化剂在1.321 V的较低电位下获得了50 mA cm-2的电流密度,并具有较低的Tafel斜率(53 mV dec1)。此外,它在30 mA cm-2下保持了40小时的稳定性。这项工作为UOR高效异质结催化剂的战略设计提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1