Design of a Dual-Phase TiN-WN electrochemical sensor for H2S detection

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-11-30 DOI:10.1016/j.jcis.2024.11.228
Zhaorui Zhang , Jing Yang , Chonghui Zhu , Mengmeng Xu , Xiaohui Yan , Jinkui Chu , Xinjiang Zhu , Minghui Yang
{"title":"Design of a Dual-Phase TiN-WN electrochemical sensor for H2S detection","authors":"Zhaorui Zhang ,&nbsp;Jing Yang ,&nbsp;Chonghui Zhu ,&nbsp;Mengmeng Xu ,&nbsp;Xiaohui Yan ,&nbsp;Jinkui Chu ,&nbsp;Xinjiang Zhu ,&nbsp;Minghui Yang","doi":"10.1016/j.jcis.2024.11.228","DOIUrl":null,"url":null,"abstract":"<div><div>Electrode materials are pivotal in fuel cell-based gas sensors, yet conventional Pt-based catalysts often suffer from limitations in electronic structure and stability, restricting the practical application of H<sub>2</sub>S detection. Here, we introduce a Pt catalyst supported by a titanium-tungsten nitride (TiN-WN) composite for an electrochemical H<sub>2</sub>S sensor. Leveraging the multilevel electron transfer of the Pt/TiN-WN composite, this sensor achieves electron accumulation on the Pt surface, yielding enhanced conductivity and abundant active sites for high H<sub>2</sub>S sensitivity. It achieves a response current of 12.2 µA, 1.7 times that of Pt/C (7.1 µA), and demonstrates excellent linearity (R<sup>2</sup> = 0.999), stability over repeated tests, and robust anti-interference capability. These findings mark a significant advancement in H<sub>2</sub>S sensing, offering a reliable solution for real-time monitoring and addressing key limitations of current systems.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"Pages 332-339"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724028169","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrode materials are pivotal in fuel cell-based gas sensors, yet conventional Pt-based catalysts often suffer from limitations in electronic structure and stability, restricting the practical application of H2S detection. Here, we introduce a Pt catalyst supported by a titanium-tungsten nitride (TiN-WN) composite for an electrochemical H2S sensor. Leveraging the multilevel electron transfer of the Pt/TiN-WN composite, this sensor achieves electron accumulation on the Pt surface, yielding enhanced conductivity and abundant active sites for high H2S sensitivity. It achieves a response current of 12.2 µA, 1.7 times that of Pt/C (7.1 µA), and demonstrates excellent linearity (R2 = 0.999), stability over repeated tests, and robust anti-interference capability. These findings mark a significant advancement in H2S sensing, offering a reliable solution for real-time monitoring and addressing key limitations of current systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于H2S检测的TiN-WN双相电化学传感器的设计。
电极材料是基于燃料电池的气体传感器的关键,但传统的基于pt的催化剂在电子结构和稳定性方面经常受到限制,限制了H2S检测的实际应用。在这里,我们介绍了一种由氮化钛-钨(TiN-WN)复合材料支撑的Pt催化剂,用于电化学H2S传感器。利用Pt/TiN-WN复合材料的多层电子转移,该传感器在Pt表面实现了电子积累,从而提高了电导率和丰富的活性位点,具有高H2S灵敏度。它的响应电流为12.2µa,是Pt/C(7.1µa)的1.7倍,具有良好的线性度(R2 = 0.999)、反复测试的稳定性和强大的抗干扰能力。这些发现标志着H2S传感技术的重大进步,为实时监测提供了可靠的解决方案,并解决了当前系统的主要局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
A double-confined strategy for enhancing the pseudocapacitance performance of nickel-based sulfides-unveiling aqueous pseudocapacitive energy storage mechanism. Enhanced photocatalytic H2O2 production via a facile atomic diffusion strategy near tammann temperature for single atom photocatalysts. Synergistic removal of chromium(VI) and tetracycline by porous carbon sponges embedded with MoS2: Performance and radical mechanism of piezoelectric catalysis. Molten salt synthesis of 1T phase dominated O-MoS2 for enhancing photocatalytic hydrogen production performance of CdS via Ohmic junction. Awakening n-π* electron transition in structurally distorted g-C3N4 nanosheets via hexamethylenetetramine-involved supercritical CO2 treatment towards efficient photocatalytic H2 production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1