Seunghoon Cho, Sujeong Eom, Daehoon Kim, Tae-Hoon Kim, Jae-Sun Uhm, Hui-Nam Pak, Moon-Hyoung Lee, Pil-Sung Yang, Eunjung Lee, Zachi Itzhak Attia, Paul Andrew Friedman, Seng Chan You, Hee Tae Yu, Boyoung Joung
{"title":"Artificial intelligence-derived electrocardiographic aging and risk of atrial fibrillation: a multi-national study.","authors":"Seunghoon Cho, Sujeong Eom, Daehoon Kim, Tae-Hoon Kim, Jae-Sun Uhm, Hui-Nam Pak, Moon-Hyoung Lee, Pil-Sung Yang, Eunjung Lee, Zachi Itzhak Attia, Paul Andrew Friedman, Seng Chan You, Hee Tae Yu, Boyoung Joung","doi":"10.1093/eurheartj/ehae790","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Artificial intelligence (AI) algorithms in 12-lead electrocardiogram (ECG) provides promising age prediction methods. This study investigated whether the discrepancy between ECG-derived AI-predicted age (AI-ECG age) and chronological age, termed electrocardiographic aging (ECG aging), is associated with atrial fibrillation (AF) risk.</p><p><strong>Methods: </strong>An AI-ECG age prediction model was developed using a large-scale dataset (1 533 042 ECGs from 689 639 participants) and validated with six independent and multi-national datasets (737 133 ECGs from 330 794 participants). The AI-ECG age gap was calculated across two South Korean cohorts [mean (standard deviation) follow-up: 4.1 (4.3) years for 111 483 participants and 6.1 (3.8) years for 37 517 participants], one UK cohort [3.0 (1.6) years; 40 973 participants], and one US cohort [12.9 (8.6) years; 90 639 participants]. Participants were classified into two groups: normal group (age gap < 7 years) and ECG-aged group (age gap ≥ 7 years). The predictive capability of ECG aging for new- and early-onset AF risk was assessed.</p><p><strong>Results: </strong>The mean AI-ECG ages were 51.9 (16.2), 47.4 (12.5), 68.4 (7.8), and 56.7 (14.6) years with age gaps of .0 (6.8), -.1 (6.0), 4.7 (8.7), and -1.4 (8.9) years in the two South Korean, UK, and US cohorts, respectively. In the ECG-aged group, increased risks of new-onset AF were observed with hazard ratios (95% confidence intervals) of 2.50 (2.24-2.78), 1.89 (1.46-2.43), 1.90 (1.55-2.33), and 1.76 (1.67-1.86) in the two South Korean, UK, and US cohorts, respectively. For early-onset AF, odds ratios were 2.89 (2.47-3.37), 1.94 (1.39-2.70), 1.58 (1.06-2.35), and 1.79 (1.62-1.97) in these cohorts compared with the normal group.</p><p><strong>Conclusions: </strong>The AI-derived ECG aging was associated with the risk of new- and early-onset AF, suggesting its potential utility to identify individuals for AF prevention across diverse populations.</p>","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":" ","pages":"839-852"},"PeriodicalIF":37.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/eurheartj/ehae790","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims: Artificial intelligence (AI) algorithms in 12-lead electrocardiogram (ECG) provides promising age prediction methods. This study investigated whether the discrepancy between ECG-derived AI-predicted age (AI-ECG age) and chronological age, termed electrocardiographic aging (ECG aging), is associated with atrial fibrillation (AF) risk.
Methods: An AI-ECG age prediction model was developed using a large-scale dataset (1 533 042 ECGs from 689 639 participants) and validated with six independent and multi-national datasets (737 133 ECGs from 330 794 participants). The AI-ECG age gap was calculated across two South Korean cohorts [mean (standard deviation) follow-up: 4.1 (4.3) years for 111 483 participants and 6.1 (3.8) years for 37 517 participants], one UK cohort [3.0 (1.6) years; 40 973 participants], and one US cohort [12.9 (8.6) years; 90 639 participants]. Participants were classified into two groups: normal group (age gap < 7 years) and ECG-aged group (age gap ≥ 7 years). The predictive capability of ECG aging for new- and early-onset AF risk was assessed.
Results: The mean AI-ECG ages were 51.9 (16.2), 47.4 (12.5), 68.4 (7.8), and 56.7 (14.6) years with age gaps of .0 (6.8), -.1 (6.0), 4.7 (8.7), and -1.4 (8.9) years in the two South Korean, UK, and US cohorts, respectively. In the ECG-aged group, increased risks of new-onset AF were observed with hazard ratios (95% confidence intervals) of 2.50 (2.24-2.78), 1.89 (1.46-2.43), 1.90 (1.55-2.33), and 1.76 (1.67-1.86) in the two South Korean, UK, and US cohorts, respectively. For early-onset AF, odds ratios were 2.89 (2.47-3.37), 1.94 (1.39-2.70), 1.58 (1.06-2.35), and 1.79 (1.62-1.97) in these cohorts compared with the normal group.
Conclusions: The AI-derived ECG aging was associated with the risk of new- and early-onset AF, suggesting its potential utility to identify individuals for AF prevention across diverse populations.
期刊介绍:
The European Heart Journal is a renowned international journal that focuses on cardiovascular medicine. It is published weekly and is the official journal of the European Society of Cardiology. This peer-reviewed journal is committed to publishing high-quality clinical and scientific material pertaining to all aspects of cardiovascular medicine. It covers a diverse range of topics including research findings, technical evaluations, and reviews. Moreover, the journal serves as a platform for the exchange of information and discussions on various aspects of cardiovascular medicine, including educational matters.
In addition to original papers on cardiovascular medicine and surgery, the European Heart Journal also presents reviews, clinical perspectives, ESC Guidelines, and editorial articles that highlight recent advancements in cardiology. Additionally, the journal actively encourages readers to share their thoughts and opinions through correspondence.