Advances in the design and development of chemical modulators of the voltage-gated potassium channels KV7.4 and KV7.5.

IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Expert Opinion on Drug Discovery Pub Date : 2025-01-01 Epub Date: 2024-12-09 DOI:10.1080/17460441.2024.2438226
Jana Lemke, Maik Gollasch, Dmitry Tsvetkov, Lukas Schulig
{"title":"Advances in the design and development of chemical modulators of the voltage-gated potassium channels K<sub>V</sub>7.4 and K<sub>V</sub>7.5.","authors":"Jana Lemke, Maik Gollasch, Dmitry Tsvetkov, Lukas Schulig","doi":"10.1080/17460441.2024.2438226","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Hypertension remains a major public health concern, with significant morbidity and mortality worldwide. Despite the availability of various antihypertensive medications, blood pressure control remains suboptimal in many individuals. During the last decades, K<sub>V</sub>7.4 and K<sub>V</sub>7.5, which were already known from the view of neuronal regulation, emerged as possible important players in the regulation of vascular tone and blood pressure.</p><p><strong>Areas covered: </strong>This review covers physiological functions and current advancements in the development of K<sub>V</sub>7.4 and K<sub>V</sub>7.5 channel modulators. The authors highlight the structural elements likely to be important for the future design of K<sub>V</sub>7 subtype-selective modulators, underscoring their potential as an innovative hypertension treatment.</p><p><strong>Expert opinion: </strong>Extensive research has been focused on targeting neuronal K<sub>V</sub>7.2 and K<sub>V</sub>7.3 channels, while K<sub>V</sub>7.4 and K<sub>V</sub>7.5 attracted less attention. Many of the developed compounds represent derivatives of flupirtine or retigabine, whereby subtype channel selectivity has only been demonstrated for a handful of individual compounds. Novel substances address additional sites within the binding pocket by incorporating new functional groups. A comprehensive and systematic evaluation of a compound set with significant subtype selectivity should be performed. The discovery of new highly active, less toxic, and selective compounds, therefore, remains the goal of further research in the coming years.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"47-62"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2024.2438226","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Hypertension remains a major public health concern, with significant morbidity and mortality worldwide. Despite the availability of various antihypertensive medications, blood pressure control remains suboptimal in many individuals. During the last decades, KV7.4 and KV7.5, which were already known from the view of neuronal regulation, emerged as possible important players in the regulation of vascular tone and blood pressure.

Areas covered: This review covers physiological functions and current advancements in the development of KV7.4 and KV7.5 channel modulators. The authors highlight the structural elements likely to be important for the future design of KV7 subtype-selective modulators, underscoring their potential as an innovative hypertension treatment.

Expert opinion: Extensive research has been focused on targeting neuronal KV7.2 and KV7.3 channels, while KV7.4 and KV7.5 attracted less attention. Many of the developed compounds represent derivatives of flupirtine or retigabine, whereby subtype channel selectivity has only been demonstrated for a handful of individual compounds. Novel substances address additional sites within the binding pocket by incorporating new functional groups. A comprehensive and systematic evaluation of a compound set with significant subtype selectivity should be performed. The discovery of new highly active, less toxic, and selective compounds, therefore, remains the goal of further research in the coming years.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.20
自引率
1.60%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development. The Editors welcome: Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.
期刊最新文献
Novel anticancer drug discovery efforts targeting glycosylation: the emergence of fluorinated monosaccharides analogs. The latest progress in assay development in leishmaniasis drug discovery: a review of the available papers on PubMed from the past year. Validation guidelines for drug-target prediction methods. Integrated machine learning and physics-based methods assisted de novo design of Fatty Acyl-CoA synthase inhibitors. Advances in the design and development of chemical modulators of the voltage-gated potassium channels KV7.4 and KV7.5.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1