ORG-317 Repurposing as a Potential Agonist Targeting TMEM236 in Colorectal Cancer Treatment: Insights from Molecular Dynamics Simulation, Principal Component Analysis, and Free Energy Landscape Study.

IF 3.5 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current medicinal chemistry Pub Date : 2024-12-03 DOI:10.2174/0109298673322888240718104833
Neha Shree Maurya, Shikha Kushwah, Amit Chaudhary, Kavita Patel, Shruti Shukla, Ashutosh Mani
{"title":"ORG-317 Repurposing as a Potential Agonist Targeting TMEM236 in Colorectal Cancer Treatment: Insights from Molecular Dynamics Simulation, Principal Component Analysis, and Free Energy Landscape Study.","authors":"Neha Shree Maurya, Shikha Kushwah, Amit Chaudhary, Kavita Patel, Shruti Shukla, Ashutosh Mani","doi":"10.2174/0109298673322888240718104833","DOIUrl":null,"url":null,"abstract":"<p><p><p> Background and objective: Colorectal Cancer (CRC) affects the colon and rectum part of the digestive system and is a significant global health concern, with approximately 1.1 million new cases annually. It ranks second in cancer-related deaths. Studies have shown future projections of CRC cases to enhance at a worrisome rate, estimating 3.2 million new cases and 1.6 million deaths worldwide by 2040. Studies have shown the downregulation of TMEM236 in CRC, and this study aimed to find the agonist to restore the function of TMEM236 via the drug repurposing method. </p><p> Methods: The different molecular and structural level analyses were performed to understand how the TMEM236 expression can be restored. To obtain the molecular level data, the following analyses were employed to understand the binding affinity and agonistic behaviour of the screened drugs: molecular docking, oral toxicity prediction, Molecular Dynamics (MD) simulation, Free Energy Landscape (FEL) analysis, and g_mmpbsa. </p><p> Results: The molecular docking, oral toxicity, and molecular interaction analyses have identified db06435, db05423, and db15197 drugs from the DrugBank database to either belong to an approved or investigational class of drugs as a potential agonist for TMEM236. The MD simulation and PCA analysis had shown db05423 (ORG-317) to exhibit stable interaction with TMEM236 protein. Similar results were obtained through FEL analysis. </p><p> Conclusion: The downregulation of TMEM236 expression and its constant binding affinity with db05423 during MD simulation suggest that this drug may restore the diminished function and expression of TMEM236. Additionally, it could function as an agonist and can be used for CRC treatment.</p>.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673322888240718104833","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: Colorectal Cancer (CRC) affects the colon and rectum part of the digestive system and is a significant global health concern, with approximately 1.1 million new cases annually. It ranks second in cancer-related deaths. Studies have shown future projections of CRC cases to enhance at a worrisome rate, estimating 3.2 million new cases and 1.6 million deaths worldwide by 2040. Studies have shown the downregulation of TMEM236 in CRC, and this study aimed to find the agonist to restore the function of TMEM236 via the drug repurposing method.

Methods: The different molecular and structural level analyses were performed to understand how the TMEM236 expression can be restored. To obtain the molecular level data, the following analyses were employed to understand the binding affinity and agonistic behaviour of the screened drugs: molecular docking, oral toxicity prediction, Molecular Dynamics (MD) simulation, Free Energy Landscape (FEL) analysis, and g_mmpbsa.

Results: The molecular docking, oral toxicity, and molecular interaction analyses have identified db06435, db05423, and db15197 drugs from the DrugBank database to either belong to an approved or investigational class of drugs as a potential agonist for TMEM236. The MD simulation and PCA analysis had shown db05423 (ORG-317) to exhibit stable interaction with TMEM236 protein. Similar results were obtained through FEL analysis.

Conclusion: The downregulation of TMEM236 expression and its constant binding affinity with db05423 during MD simulation suggest that this drug may restore the diminished function and expression of TMEM236. Additionally, it could function as an agonist and can be used for CRC treatment.

.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current medicinal chemistry
Current medicinal chemistry 医学-生化与分子生物学
CiteScore
8.60
自引率
2.40%
发文量
468
审稿时长
3 months
期刊介绍: Aims & Scope Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
An Updated Review Deciphering Apigenin Nanostructures as Promising Therapeutic Efficiency in Human Carcinomas. Anticancer and Cyclooxygenase Inhibitory Activity of Benzylidene Derivatives of Fenobam and its Thio Analogues. FHL1 Inhibition by Mir-1301-3p Promotes Uterine Corpus Endometrial Carcinoma Cell Proliferation and Migration: A Prognostic Insight. ORG-317 Repurposing as a Potential Agonist Targeting TMEM236 in Colorectal Cancer Treatment: Insights from Molecular Dynamics Simulation, Principal Component Analysis, and Free Energy Landscape Study. Development and Validation of a Diagnostic Model for AKI Based on the Analysis of Ferroptosis-related Genes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1