A wide range of chromosome numbers result from unreduced gamete production in Brassica juncea × B. napus (AABC) interspecific hybrids.

IF 3.1 2区 生物学 Q2 ECOLOGY Heredity Pub Date : 2024-11-30 DOI:10.1038/s41437-024-00738-6
Charles Addo Nyarko, Elvis Katche, Mariana Báez, Zhenling Lv, Annaliese S Mason
{"title":"A wide range of chromosome numbers result from unreduced gamete production in Brassica juncea × B. napus (AABC) interspecific hybrids.","authors":"Charles Addo Nyarko, Elvis Katche, Mariana Báez, Zhenling Lv, Annaliese S Mason","doi":"10.1038/s41437-024-00738-6","DOIUrl":null,"url":null,"abstract":"<p><p>The establishment of successful interspecies hybrids requires restoration of a stable \"2n\" chromosome complement which can produce viable \"n\" gametes. This may occur (rarely) via recombination between non-homologous chromosomes, or more commonly is associated with a doubling of parental chromosome number to produce new homologous pairing partners in the hybrid. The production of unreduced \"2n\" gametes (gametes with the somatic chromosome number) may therefore be evolutionarily useful by serving as a key pathway for the formation of new polyploid hybrids, as might specific mechanisms permitting recombination between non-homologous chromosomes. Here, we investigated chromosome complements and fertility in third generation interspecific hybrids (AABC) resulting from a cross between allopolyploids Brassica juncea (AABB) × B. napus (AACC) followed by self-pollination for two generations. Chromosome numbers ranged from 2n = 48-74 in the experimental population (35 plants), with 9-16 B genome chromosomes and up to 4 copies of A genome chromosomes. Unreduced gamete production leading to a putative genome structure of approximately AAAABBCC was hence predicted to explain the high chromosome numbers observed. Additionally, the estimation of nuclei number in post-meiotic sporads revealed a higher frequency of unreduced gametes (0.04-5.21%) in the third generation AABC interspecific hybrids compared to the parental Brassica juncea (0.07%) and B. napus (0.13%). Our results suggest that unreduced gamete production in the subsequent generations following interspecific hybridization events may play a critical role in restoration of more stable, fertile chromosome complements.</p>","PeriodicalId":12991,"journal":{"name":"Heredity","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41437-024-00738-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The establishment of successful interspecies hybrids requires restoration of a stable "2n" chromosome complement which can produce viable "n" gametes. This may occur (rarely) via recombination between non-homologous chromosomes, or more commonly is associated with a doubling of parental chromosome number to produce new homologous pairing partners in the hybrid. The production of unreduced "2n" gametes (gametes with the somatic chromosome number) may therefore be evolutionarily useful by serving as a key pathway for the formation of new polyploid hybrids, as might specific mechanisms permitting recombination between non-homologous chromosomes. Here, we investigated chromosome complements and fertility in third generation interspecific hybrids (AABC) resulting from a cross between allopolyploids Brassica juncea (AABB) × B. napus (AACC) followed by self-pollination for two generations. Chromosome numbers ranged from 2n = 48-74 in the experimental population (35 plants), with 9-16 B genome chromosomes and up to 4 copies of A genome chromosomes. Unreduced gamete production leading to a putative genome structure of approximately AAAABBCC was hence predicted to explain the high chromosome numbers observed. Additionally, the estimation of nuclei number in post-meiotic sporads revealed a higher frequency of unreduced gametes (0.04-5.21%) in the third generation AABC interspecific hybrids compared to the parental Brassica juncea (0.07%) and B. napus (0.13%). Our results suggest that unreduced gamete production in the subsequent generations following interspecific hybridization events may play a critical role in restoration of more stable, fertile chromosome complements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Heredity
Heredity 生物-进化生物学
CiteScore
7.50
自引率
2.60%
发文量
84
审稿时长
4-8 weeks
期刊介绍: Heredity is the official journal of the Genetics Society. It covers a broad range of topics within the field of genetics and therefore papers must address conceptual or applied issues of interest to the journal''s wide readership
期刊最新文献
Infection pattern of male-killing viruses alters phenotypes in the tea tortrix moth Homona magnanima. Multigenerational hybridisation results in heterosis and facilitates adaptive introgression, with no evidence of outbreeding depression in a pair of marine gastropods. A wide range of chromosome numbers result from unreduced gamete production in Brassica juncea × B. napus (AABC) interspecific hybrids. The genetic origins of species boundaries at subtropical and temperate ecoregions in the North American racers (Coluber constrictor). Multi-population GWAS detects robust marker associations in a newly established six-rowed winter barley breeding program.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1