NOD3 Reduces Sepsis-Induced Acute Lung Injury by Regulating the Activation of NLRP3 Inflammasome and the Polarization of Alveolar Macrophages.

IF 4.5 2区 医学 Q2 CELL BIOLOGY Inflammation Pub Date : 2024-12-02 DOI:10.1007/s10753-024-02197-x
Yue Zhao, Yongran Wu, Lianlian Qu, Yingying Hu, Shengwen Sun, Ruishan Yao, Ruiting Li
{"title":"NOD3 Reduces Sepsis-Induced Acute Lung Injury by Regulating the Activation of NLRP3 Inflammasome and the Polarization of Alveolar Macrophages.","authors":"Yue Zhao, Yongran Wu, Lianlian Qu, Yingying Hu, Shengwen Sun, Ruishan Yao, Ruiting Li","doi":"10.1007/s10753-024-02197-x","DOIUrl":null,"url":null,"abstract":"<p><p>The pathogenesis of sepsis-induced Acute lung injury (ALI) progresses rapidly, and no effective treatment drugs are known, resulting in a high mortality rate. NLR family pyrin domain containing 3 (NLRP3) inflammasome activation plays an important role in the pathological progression of ALI, and often coincide with the inflammatory activation and polarization of macrophages. NLR family CARD domain-containing protein 3 (NOD3) was reported protecting against sepsis-induced pulmonary pathological injury and inhibiting the inflammatory response in lung tissue. NOD3 can also inhibit NLRP3 inflammasome activation by competitively inhibiting the binding of pro-caspase-1 to apoptosis-related ASC or reducing NLRP3/cryopyrin-induced ASC speckle formation. In this study, we aimed to explore whether NOD3 decrease sepsis-induced lung injury by interfering with NLRP3 inflammasome activation and regulating alveolar macrophages (AMs) polarization. To investigate whether NOD3 reduce sepsis-induced ALI by inhibiting the activation of NLRP3 inflammasome to regulate the polarization of AMs. Sepsis-induced WT (C57BL/6) and NLRC3<sup>-</sup><sup>/</sup><sup>-</sup>-C57BL/6 mice ALI models were established by intraperitoneal injection of lipopolysaccharide (LPS). In vitro experiments, AMs and bone marrow-derived macrophages (BMDMs) were isolated from WT and NLRC3<sup>-</sup><sup>/</sup><sup>-</sup> mice. Using in vivo and in vitro experiments, we found that NOD3 knockout promoted the sepsis-induced inflammatory response in lung tissue. In addition, NOD3 knockout promoted the activation of the TRAF6-NF-κB signaling pathway and the NLRP3 inflammasome in AMs, enhanced the M1-type polarization of AMs and decreased the M2-type polarization of AMs in sepsis-induced lung injury model mice. NOD3 interfered with NLRP3 inflammasome activation by inhibiting NLRP3 inflammasome assembly or negatively regulating the TRAF6-NF-κB signaling pathway, and regulating the polarization of AMs, thereby alleviating sepsis-induced lung injury.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02197-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The pathogenesis of sepsis-induced Acute lung injury (ALI) progresses rapidly, and no effective treatment drugs are known, resulting in a high mortality rate. NLR family pyrin domain containing 3 (NLRP3) inflammasome activation plays an important role in the pathological progression of ALI, and often coincide with the inflammatory activation and polarization of macrophages. NLR family CARD domain-containing protein 3 (NOD3) was reported protecting against sepsis-induced pulmonary pathological injury and inhibiting the inflammatory response in lung tissue. NOD3 can also inhibit NLRP3 inflammasome activation by competitively inhibiting the binding of pro-caspase-1 to apoptosis-related ASC or reducing NLRP3/cryopyrin-induced ASC speckle formation. In this study, we aimed to explore whether NOD3 decrease sepsis-induced lung injury by interfering with NLRP3 inflammasome activation and regulating alveolar macrophages (AMs) polarization. To investigate whether NOD3 reduce sepsis-induced ALI by inhibiting the activation of NLRP3 inflammasome to regulate the polarization of AMs. Sepsis-induced WT (C57BL/6) and NLRC3-/--C57BL/6 mice ALI models were established by intraperitoneal injection of lipopolysaccharide (LPS). In vitro experiments, AMs and bone marrow-derived macrophages (BMDMs) were isolated from WT and NLRC3-/- mice. Using in vivo and in vitro experiments, we found that NOD3 knockout promoted the sepsis-induced inflammatory response in lung tissue. In addition, NOD3 knockout promoted the activation of the TRAF6-NF-κB signaling pathway and the NLRP3 inflammasome in AMs, enhanced the M1-type polarization of AMs and decreased the M2-type polarization of AMs in sepsis-induced lung injury model mice. NOD3 interfered with NLRP3 inflammasome activation by inhibiting NLRP3 inflammasome assembly or negatively regulating the TRAF6-NF-κB signaling pathway, and regulating the polarization of AMs, thereby alleviating sepsis-induced lung injury.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NOD3通过调节NLRP3炎性体的激活和肺泡巨噬细胞的极化,减轻脓毒症诱导的急性肺损伤。
脓毒症引起的急性肺损伤(ALI)的发病机制进展迅速,目前尚无有效的治疗药物,死亡率高。NLR家族pyrin domain containing 3 (NLRP3)炎性小体激活在ALI的病理进展中起重要作用,且常与巨噬细胞的炎症激活和极化相吻合。据报道,NLR家族CARD结构域蛋白3 (NOD3)对脓毒症诱导的肺病理损伤具有保护作用,并抑制肺组织的炎症反应。NOD3还可以通过竞争性抑制前caspase-1与凋亡相关的ASC结合或减少NLRP3/cryopyrin诱导的ASC斑点形成来抑制NLRP3炎性小体的激活。在本研究中,我们旨在探讨NOD3是否通过干扰NLRP3炎性体激活和调节肺泡巨噬细胞(AMs)极化来减轻败血症诱导的肺损伤。探讨NOD3是否通过抑制NLRP3炎性小体的激活来调节am的极化,从而减少败血症诱导的ALI。通过腹腔注射脂多糖(LPS)建立脓毒症诱导的WT (C57BL/6)和NLRC3-/—C57BL/6小鼠ALI模型。在体外实验中,从WT和NLRC3-/-小鼠中分离出AMs和骨髓源性巨噬细胞(bmdm)。通过体内和体外实验,我们发现NOD3敲除可促进脓毒症诱导的肺组织炎症反应。此外,敲除NOD3可促进脓毒症肺损伤模型小鼠AMs中TRAF6-NF-κB信号通路和NLRP3炎性小体的激活,增强AMs的m1型极化,降低AMs的m2型极化。NOD3通过抑制NLRP3炎性小体组装或负调控TRAF6-NF-κB信号通路,调控AMs的极化,从而干扰NLRP3炎性小体的激活,从而减轻败血症诱导的肺损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
Penicillin-Streptomycin Liquid (PSL)
来源期刊
Inflammation
Inflammation 医学-免疫学
CiteScore
9.70
自引率
0.00%
发文量
168
审稿时长
3.0 months
期刊介绍: Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.
期刊最新文献
Exploration of the Combined Mechanism of Direct and Indirect Effects of Paeoniflorin in the Treatment of Cholestasis. Kurarinone Mitigates LPS-Induced Inflammatory Osteolysis by Inhibiting Osteoclastogenesis Through the Reduction of ROS Levels and Suppression of the PI3K/AKT Signaling Pathway. KW-2449 Ameliorates Cardiac Dysfunction in a Rat Model of Sepsis-Induced Cardiomyopathy. Mitigation of Neuroinflammation and Oxidative Stress in Rotenone-Induced Parkinson Mouse Model through Liposomal Coenzyme-Q10 Intervention: A Comprehensive In-vivo Study. Toll-like Receptors 1, 3 and 7 Activate Distinct Genetic Features of NF-κB Signaling and γ-Protocadherin Expression in Human Cardiac Fibroblasts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1