RO4929097 inhibits NICD3 to alleviate pulmonary hypertension via blocking Notch3/HIF-2α/FoxM1 signaling pathway.

IF 1.5 4区 生物学 Q4 CELL BIOLOGY In Vitro Cellular & Developmental Biology. Animal Pub Date : 2024-12-02 DOI:10.1007/s11626-024-00976-2
Hao Zhu, Cheng Li, Fang Hu, Lifu Wu, Ling Wu, Meihua Zhou, Wei Liu, Aiguo Dai
{"title":"RO4929097 inhibits NICD3 to alleviate pulmonary hypertension via blocking Notch3/HIF-2α/FoxM1 signaling pathway.","authors":"Hao Zhu, Cheng Li, Fang Hu, Lifu Wu, Ling Wu, Meihua Zhou, Wei Liu, Aiguo Dai","doi":"10.1007/s11626-024-00976-2","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary hypertension (PH) is a condition in which the smooth muscle cells (SMCs) in the pulmonary arteries multiply excessively, causing the arteries to narrow. This can ultimately result in right heart failure and premature death. Notch3 is an important factor involved in pulmonary vascular remodeling in PH. RO4929097, as a γ-secretase inhibitor that inhibits Notch3 signaling pathway, may be a potential drug for the treatment of PH, but its feasibility and related mechanism of action need to be further investigated. In vitro modeling by hypoxic incubation of human pulmonary artery SMCs (HPASMCs). RO4929097 and plasmids including overexpression-NICD3 (oe-NICD3) and NICD3 small interfering RNA (siRNA) were used to alter the expression of NICD3, and HIF-2α inhibitor PT-2385 was used to alter the expression of HIF-2α. Western blot, EdU incorporation assay was used to investigate the alteration of NICD3, HIF-2α, FoxM1 protein expression, and cell proliferation. The severity of PH in rats was assessed by measuring the weight ratio of right ventricle (RV) to left ventricle (LV) and septum (S) (RV/[LV + S]) and hematoxylin-eosin (H&E) staining of lung tissues in a hypoxia-induced PH rat model. We first determined that hypoxia induction for 48 h had the strongest induction of NICD3 and Notch3 in HPASMCs, and the strongest inhibition by 10 μM RO4929097. Treatment of HPASMCs under hypoxic conditions with RO4929097 inhibited hypoxia-induced expression of NICD3, HIF-2α, FoxM1, and proliferation of HPASMCs. The inhibitory effect of RO4929097 was reversed after overexpression of NICD3 in HPASMCs. Further, we found that PT-2385 reversed the promotional effect of overexpression of NICD3 on the proliferation of HPASMCs. In vivo experiments, hypoxia-induced PH rats treated with RO4929097 showed a reduction in right ventricular hypertrophy index (RVHI) and a return to normal pulmonary artery morphology, indicating a reduction in the severity of PH. Our data suggest that RO4929097 regulates the Notch3/HIF-2α/FoxM1 signaling pathway by inhibiting the expression of NICD3, thereby inhibiting hypoxia-induced proliferation of HPASMCs. In vivo experiments also confirmed that RO4929097 could alleviate PH as a potential therapeutic strategy.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00976-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pulmonary hypertension (PH) is a condition in which the smooth muscle cells (SMCs) in the pulmonary arteries multiply excessively, causing the arteries to narrow. This can ultimately result in right heart failure and premature death. Notch3 is an important factor involved in pulmonary vascular remodeling in PH. RO4929097, as a γ-secretase inhibitor that inhibits Notch3 signaling pathway, may be a potential drug for the treatment of PH, but its feasibility and related mechanism of action need to be further investigated. In vitro modeling by hypoxic incubation of human pulmonary artery SMCs (HPASMCs). RO4929097 and plasmids including overexpression-NICD3 (oe-NICD3) and NICD3 small interfering RNA (siRNA) were used to alter the expression of NICD3, and HIF-2α inhibitor PT-2385 was used to alter the expression of HIF-2α. Western blot, EdU incorporation assay was used to investigate the alteration of NICD3, HIF-2α, FoxM1 protein expression, and cell proliferation. The severity of PH in rats was assessed by measuring the weight ratio of right ventricle (RV) to left ventricle (LV) and septum (S) (RV/[LV + S]) and hematoxylin-eosin (H&E) staining of lung tissues in a hypoxia-induced PH rat model. We first determined that hypoxia induction for 48 h had the strongest induction of NICD3 and Notch3 in HPASMCs, and the strongest inhibition by 10 μM RO4929097. Treatment of HPASMCs under hypoxic conditions with RO4929097 inhibited hypoxia-induced expression of NICD3, HIF-2α, FoxM1, and proliferation of HPASMCs. The inhibitory effect of RO4929097 was reversed after overexpression of NICD3 in HPASMCs. Further, we found that PT-2385 reversed the promotional effect of overexpression of NICD3 on the proliferation of HPASMCs. In vivo experiments, hypoxia-induced PH rats treated with RO4929097 showed a reduction in right ventricular hypertrophy index (RVHI) and a return to normal pulmonary artery morphology, indicating a reduction in the severity of PH. Our data suggest that RO4929097 regulates the Notch3/HIF-2α/FoxM1 signaling pathway by inhibiting the expression of NICD3, thereby inhibiting hypoxia-induced proliferation of HPASMCs. In vivo experiments also confirmed that RO4929097 could alleviate PH as a potential therapeutic strategy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
期刊最新文献
Efficacy determination of a disinfectant against channel catfish virus by in vitro and in vivo methods. Preliminary study on the potential damage of cigarette smoke extract in 3D human chondrocyte culture. Expression, prognosis, immunological infiltration, and DNA methylation of members of the SFRP gene family in colorectal cancer: a comparative bioinformatic and experimental analysis. OPA3 inhibits the cGAS-STING pathway mediated by mtDNA stress to promote colorectal cancer progression. Maxing Yigan formula promotes cartilage regeneration by regulating chondrocyte autophagy in osteoarthritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1