Human leukocyte antigen DR alpha inhibits renal cell carcinoma progression by promoting the polarization of M2 macrophages to M1 via the NF-κB pathway.
{"title":"Human leukocyte antigen DR alpha inhibits renal cell carcinoma progression by promoting the polarization of M2 macrophages to M1 via the NF-κB pathway.","authors":"Feng Xiong, Bowen Wang, Haoxun Zhang, Guoling Zhang, Yiwen Liu, Yujie Liu, Chunyang Wang","doi":"10.1016/j.intimp.2024.113706","DOIUrl":null,"url":null,"abstract":"<p><p>Human leukocyte antigen DR alpha (HLA-DRA) is recognized for its inhibitory effect on the progression of clear cell renal cell carcinoma (ccRCC); high HLA-DRA expression levels are positively correlated with improved prognosis in patients with ccRCC. In this study, we evaluated HLA-DRA expression in ccRCCs, its effects on tumor-associated macrophage recruitment, and the influence of polarization. Clinical cohort analyses revealed that elevated HLA-DRA expression in ccRCC cells was correlated with enhanced tumor infiltration by M1-type macrophages. In addition, ccRCC prognosis was predicted by combining HLA-DRA expression level analysis and the M1/M2 macrophage ratio. In vitro studies demonstrated that ccRCC cells with increased HLA-DRA expression promoted THP-1 cell migration and induced macrophage polarization toward the M1 phenotype. The effect was further substantiated in a mouse xenograft model in which an increase in M1 macrophages was observed. In addition, co-culturing macrophages with the supernatant from cells overexpressing HLA-DRA induced the expression of proteins associated with both M1 and M2 macrophage polarization. HLA-DRA was intricately linked to the expression and secretion of chemokines, including CCL2, CCL5, MIP-1ɑ, and CXCL-10. Moreover, the NF-κB pathway activation promoted polarization to M1 macrophages. This study shows that HLA-DRA and the M1/M2 ratio are indicators of favorable prognosis in patients with ccRCC. HLA-DRA promotes M1-like polarization by regulating NF-κB, which can be used as a therapeutic target to enhance anti-tumor immunity.</p>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"144 ","pages":"113706"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.intimp.2024.113706","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human leukocyte antigen DR alpha (HLA-DRA) is recognized for its inhibitory effect on the progression of clear cell renal cell carcinoma (ccRCC); high HLA-DRA expression levels are positively correlated with improved prognosis in patients with ccRCC. In this study, we evaluated HLA-DRA expression in ccRCCs, its effects on tumor-associated macrophage recruitment, and the influence of polarization. Clinical cohort analyses revealed that elevated HLA-DRA expression in ccRCC cells was correlated with enhanced tumor infiltration by M1-type macrophages. In addition, ccRCC prognosis was predicted by combining HLA-DRA expression level analysis and the M1/M2 macrophage ratio. In vitro studies demonstrated that ccRCC cells with increased HLA-DRA expression promoted THP-1 cell migration and induced macrophage polarization toward the M1 phenotype. The effect was further substantiated in a mouse xenograft model in which an increase in M1 macrophages was observed. In addition, co-culturing macrophages with the supernatant from cells overexpressing HLA-DRA induced the expression of proteins associated with both M1 and M2 macrophage polarization. HLA-DRA was intricately linked to the expression and secretion of chemokines, including CCL2, CCL5, MIP-1ɑ, and CXCL-10. Moreover, the NF-κB pathway activation promoted polarization to M1 macrophages. This study shows that HLA-DRA and the M1/M2 ratio are indicators of favorable prognosis in patients with ccRCC. HLA-DRA promotes M1-like polarization by regulating NF-κB, which can be used as a therapeutic target to enhance anti-tumor immunity.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.