Thomas Perrin, Gilbert A Chahine, Stéphan Arnaud, Arthur Després, Pierre Heugue, Alexis Deschamps, Frédéric De Geuser
{"title":"Improving the reliability of small- and wide-angle X-ray scattering measurements of anisotropic precipitates in metallic alloys using sample rotation.","authors":"Thomas Perrin, Gilbert A Chahine, Stéphan Arnaud, Arthur Després, Pierre Heugue, Alexis Deschamps, Frédéric De Geuser","doi":"10.1107/S1600576724009294","DOIUrl":null,"url":null,"abstract":"<p><p>Nanometric precipitates in metallic alloys often have highly anisotropic shapes. Given the large grain size and non-random texture typical of these alloys, performing small- and wide-angle X-ray scattering (SAXS/WAXS) measurements on such samples for determining their characteristics (typically size and volume fraction) results in highly anisotropic and irreproducible data. Rotations of flat samples during SAXS/WAXS acquisitions are presented here as a solution to these anisotropy issues. Two aluminium alloys containing anisotropic precipitates are used as examples to validate the approach with a -45°/45° angular range. Clear improvements can be seen on the SAXS <i>I</i>(<i>q</i>) fitting and the consistency between the different SAXS/WAXS measurements. This method-ology results in more reliable measurements of the precipitate's characteristics, and thus allows for time- and space-resolved measurements with higher accuracy.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"57 Pt 6","pages":"1800-1814"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611286/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724009294","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Nanometric precipitates in metallic alloys often have highly anisotropic shapes. Given the large grain size and non-random texture typical of these alloys, performing small- and wide-angle X-ray scattering (SAXS/WAXS) measurements on such samples for determining their characteristics (typically size and volume fraction) results in highly anisotropic and irreproducible data. Rotations of flat samples during SAXS/WAXS acquisitions are presented here as a solution to these anisotropy issues. Two aluminium alloys containing anisotropic precipitates are used as examples to validate the approach with a -45°/45° angular range. Clear improvements can be seen on the SAXS I(q) fitting and the consistency between the different SAXS/WAXS measurements. This method-ology results in more reliable measurements of the precipitate's characteristics, and thus allows for time- and space-resolved measurements with higher accuracy.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.