Real-time analysis of liquid jet sample delivery stability for an X-ray free-electron laser using machine vision.

IF 6.1 3区 材料科学 Q1 Biochemistry, Genetics and Molecular Biology Journal of Applied Crystallography Pub Date : 2024-11-17 eCollection Date: 2024-12-01 DOI:10.1107/S1600576724009853
Jaydeep Patel, Adam Round, Raphael de Wijn, Mohammad Vakili, Gabriele Giovanetti, Diogo Filipe Monrroy Vilan E Melo, Juncheng E, Marcin Sikorski, Jayanth Koliyadu, Faisal H M Koua, Tokushi Sato, Adrian Mancuso, Andrew Peele, Brian Abbey
{"title":"Real-time analysis of liquid jet sample delivery stability for an X-ray free-electron laser using machine vision.","authors":"Jaydeep Patel, Adam Round, Raphael de Wijn, Mohammad Vakili, Gabriele Giovanetti, Diogo Filipe Monrroy Vilan E Melo, Juncheng E, Marcin Sikorski, Jayanth Koliyadu, Faisal H M Koua, Tokushi Sato, Adrian Mancuso, Andrew Peele, Brian Abbey","doi":"10.1107/S1600576724009853","DOIUrl":null,"url":null,"abstract":"<p><p>Automated evaluation of optical microscopy images of liquid jets, commonly used for sample delivery at X-ray free-electron lasers (XFELs), enables real-time tracking of the jet position and liquid jet hit rates, defined here as the proportion of XFEL pulses intersecting with the liquid jet. This method utilizes machine vision for preprocessing, feature extraction, segmentation and jet detection as well as tracking to extract key physical characteristics (such as the jet angle) from optical microscopy images captured during experiments. To determine the effectiveness of these tools in monitoring jet stability and enhancing sample delivery efficiency, we conducted XFEL experiments with various sample compositions (pure water, buffer and buffer with crystals), nozzle designs and jetting conditions. We integrated our real-time analysis algorithm into the Karabo control system at the European XFEL. The results indicate that the algorithm performs well in monitoring the jet angle and provides a quantitative characterization of liquid jet stability through optical image analysis conducted during experiments.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"57 Pt 6","pages":"1859-1870"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611288/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724009853","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Automated evaluation of optical microscopy images of liquid jets, commonly used for sample delivery at X-ray free-electron lasers (XFELs), enables real-time tracking of the jet position and liquid jet hit rates, defined here as the proportion of XFEL pulses intersecting with the liquid jet. This method utilizes machine vision for preprocessing, feature extraction, segmentation and jet detection as well as tracking to extract key physical characteristics (such as the jet angle) from optical microscopy images captured during experiments. To determine the effectiveness of these tools in monitoring jet stability and enhancing sample delivery efficiency, we conducted XFEL experiments with various sample compositions (pure water, buffer and buffer with crystals), nozzle designs and jetting conditions. We integrated our real-time analysis algorithm into the Karabo control system at the European XFEL. The results indicate that the algorithm performs well in monitoring the jet angle and provides a quantitative characterization of liquid jet stability through optical image analysis conducted during experiments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器视觉实时分析x射线自由电子激光器的液体喷射样品输送稳定性。
液体射流的光学显微镜图像的自动评估,通常用于x射线自由电子激光器(XFELs)的样品输送,可以实时跟踪射流位置和液体射流命中率,这里定义为XFEL脉冲与液体射流相交的比例。该方法利用机器视觉对实验中捕获的光学显微镜图像进行预处理、特征提取、分割和射流检测以及跟踪,提取关键的物理特征(如射流角度)。为了确定这些工具在监测射流稳定性和提高样品输送效率方面的有效性,我们在不同的样品组成(纯水、缓冲液和带晶体的缓冲液)、喷嘴设计和喷射条件下进行了XFEL实验。我们将实时分析算法集成到欧洲XFEL的Karabo控制系统中。实验结果表明,该算法能够很好地监测射流角度,并通过实验过程中的光学图像分析对液体射流稳定性进行了定量表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
3.30%
发文量
178
审稿时长
4.7 months
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
期刊最新文献
Thermal diffuse scattering analysis of Ag2O binary system via X-ray powder diffraction. Top dusted adhesive tape sample preparation method for the X-ray diffraction analysis of small powder sample volumes with the Bragg-Brentano setup. Journal of Applied Crystallography welcomes eight new Co-editors. A new technical solution to the problem of increasing the resolution of X-ray diffraction methods. An extended thermal pressure equation of state for sodium fluoride.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1