Quadrant darkfield for label-free imaging of intracellular puncta.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Biomedical Optics Pub Date : 2024-11-01 Epub Date: 2024-11-29 DOI:10.1117/1.JBO.29.11.116501
Tarek E Moustafa, Rachel L Belote, Edward R Polanco, Robert L Judson-Torres, Thomas A Zangle
{"title":"Quadrant darkfield for label-free imaging of intracellular puncta.","authors":"Tarek E Moustafa, Rachel L Belote, Edward R Polanco, Robert L Judson-Torres, Thomas A Zangle","doi":"10.1117/1.JBO.29.11.116501","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Imaging changes in subcellular structure is critical to understanding cell behavior but labeling can be impractical for some specimens and may induce artifacts. Although darkfield microscopy can reveal internal cell structures, it often produces strong signals at cell edges that obscure intracellular details. By optically eliminating the edge signal from darkfield images, we can resolve and quantify changes to cell structure without labeling.</p><p><strong>Aim: </strong>We introduce a computational darkfield imaging approach named quadrant darkfield (QDF) to separate smaller cellular features from large structures, enabling label-free imaging of cell organelles and structures in living cells.</p><p><strong>Approach: </strong>Using a programmable LED array as the illumination source, we vary the direction of illumination to encode additional information about the feature size within cells. This is possible due to the varying levels of directional scattering produced by features based on their sizes relative to the wavelength of light used.</p><p><strong>Results: </strong>QDF successfully resolved small cellular features without interference from larger structures. QDF signal is more consistent during cell shape changes than traditional darkfield. QDF signals correlate with flow cytometry side scatter measurements, effectively differentiating cells by organelle content.</p><p><strong>Conclusions: </strong>QDF imaging enhances the study of subcellular structures in living cells, offering improved quantification of organelle content compared with darkfield without labels. This method can be simultaneously performed with other techniques such as quantitative phase imaging to generate a multidimensional picture of living cells in real-time.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 11","pages":"116501"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605245/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.11.116501","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Imaging changes in subcellular structure is critical to understanding cell behavior but labeling can be impractical for some specimens and may induce artifacts. Although darkfield microscopy can reveal internal cell structures, it often produces strong signals at cell edges that obscure intracellular details. By optically eliminating the edge signal from darkfield images, we can resolve and quantify changes to cell structure without labeling.

Aim: We introduce a computational darkfield imaging approach named quadrant darkfield (QDF) to separate smaller cellular features from large structures, enabling label-free imaging of cell organelles and structures in living cells.

Approach: Using a programmable LED array as the illumination source, we vary the direction of illumination to encode additional information about the feature size within cells. This is possible due to the varying levels of directional scattering produced by features based on their sizes relative to the wavelength of light used.

Results: QDF successfully resolved small cellular features without interference from larger structures. QDF signal is more consistent during cell shape changes than traditional darkfield. QDF signals correlate with flow cytometry side scatter measurements, effectively differentiating cells by organelle content.

Conclusions: QDF imaging enhances the study of subcellular structures in living cells, offering improved quantification of organelle content compared with darkfield without labels. This method can be simultaneously performed with other techniques such as quantitative phase imaging to generate a multidimensional picture of living cells in real-time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
期刊最新文献
Hyperspectral imaging in neurosurgery: a review of systems, computational methods, and clinical applications. Digital instrument simulator to optimize the development of hyperspectral systems: application for intraoperative functional brain mapping. Personal identification using a cross-sectional hyperspectral image of a hand. Exploring near-infrared autofluorescence properties in parathyroid tissue: an analysis of fresh and paraffin-embedded thyroidectomy specimens. Impact of signal-to-noise ratio and contrast definition on the sensitivity assessment and benchmarking of fluorescence molecular imaging systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1