{"title":"Effects of Cacna1d D307G mutation on blood pressure and kidney function in rats with salt loading.","authors":"Lan Cheng, Hui Chen, R Nfornah Maboh, Huan Wang","doi":"10.1159/000542828","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Our recent findings revealed that CACNA1D D307G mutation participates in the early onset hypertension.</p><p><strong>Methods: </strong>we used CRISPR/Cas9 technique to generate the Cacna1d D307G mutation rat model and investigated the effects of Cacna1d D307G mutation on blood pressure (BP) and renal function. Rats fed normal-salt diet (NSD) had normal plasma aldosterone levels but higher plasma ET-1 and mildly elevated systolic blood pressure (SBP) in D307G and G307G rats compared with the wild type (WT) until 24 weeks. Renal function and renal histopathology did not significantly differ among the three groups.</p><p><strong>Results: </strong>When fed high-salt diet (HSD), D307G and G307G rats showed more sensitivity to HSD. The results showed a further increase in SBP than in WT rats. Plasma and vascular ET-1 level and cortex and renal artery endothelin type A receptor (ETA) protein expression were significantly increased. Enhanced renal injury was also noted as indicated by an increased ratio of kidney weight/body weight, elevated urinary protein and albumin/creatinine ratio, higher kidney injury molecule-1 (KIM-1) levels, advanced fibrosis and apoptosis, and inflammation. Further experiments revealed a reduction in urinary sodium excretion and creatinine clearance. Higher protein expression of renal cortex epithelial sodium channel α subunit (αENaC) was confirmed in D307G and G307G rats fed HSD. However, a selective ETA receptor blockade (ABT-627) could partially reverse the increased SBP, increased serum KIM-1 level, upregulated renal cortex protein expression of αENaC, and reduced urinary sodium excretion with reduced creatinine clearance in D307G rats fed HSD.</p><p><strong>Conclusion: </strong>Activation of ET-1/ETA system in D307G mutation rats might contributed to increased sensitivity to salt loading, augmented hypertension, and exacerbated the renal injury.</p>","PeriodicalId":17813,"journal":{"name":"Kidney & blood pressure research","volume":" ","pages":"1-20"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney & blood pressure research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000542828","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Our recent findings revealed that CACNA1D D307G mutation participates in the early onset hypertension.
Methods: we used CRISPR/Cas9 technique to generate the Cacna1d D307G mutation rat model and investigated the effects of Cacna1d D307G mutation on blood pressure (BP) and renal function. Rats fed normal-salt diet (NSD) had normal plasma aldosterone levels but higher plasma ET-1 and mildly elevated systolic blood pressure (SBP) in D307G and G307G rats compared with the wild type (WT) until 24 weeks. Renal function and renal histopathology did not significantly differ among the three groups.
Results: When fed high-salt diet (HSD), D307G and G307G rats showed more sensitivity to HSD. The results showed a further increase in SBP than in WT rats. Plasma and vascular ET-1 level and cortex and renal artery endothelin type A receptor (ETA) protein expression were significantly increased. Enhanced renal injury was also noted as indicated by an increased ratio of kidney weight/body weight, elevated urinary protein and albumin/creatinine ratio, higher kidney injury molecule-1 (KIM-1) levels, advanced fibrosis and apoptosis, and inflammation. Further experiments revealed a reduction in urinary sodium excretion and creatinine clearance. Higher protein expression of renal cortex epithelial sodium channel α subunit (αENaC) was confirmed in D307G and G307G rats fed HSD. However, a selective ETA receptor blockade (ABT-627) could partially reverse the increased SBP, increased serum KIM-1 level, upregulated renal cortex protein expression of αENaC, and reduced urinary sodium excretion with reduced creatinine clearance in D307G rats fed HSD.
Conclusion: Activation of ET-1/ETA system in D307G mutation rats might contributed to increased sensitivity to salt loading, augmented hypertension, and exacerbated the renal injury.
期刊介绍:
This journal comprises both clinical and basic studies at the interface of nephrology, hypertension and cardiovascular research. The topics to be covered include the structural organization and biochemistry of the normal and diseased kidney, the molecular biology of transporters, the physiology and pathophysiology of glomerular filtration and tubular transport, endothelial and vascular smooth muscle cell function and blood pressure control, as well as water, electrolyte and mineral metabolism. Also discussed are the (patho)physiology and (patho) biochemistry of renal hormones, the molecular biology, genetics and clinical course of renal disease and hypertension, the renal elimination, action and clinical use of drugs, as well as dialysis and transplantation. Featuring peer-reviewed original papers, editorials translating basic science into patient-oriented research and disease, in depth reviews, and regular special topic sections, ''Kidney & Blood Pressure Research'' is an important source of information for researchers in nephrology and cardiovascular medicine.