Josie A Christopher, Lisa M Breckels, Oliver M Crook, Mercedes Vazquez-Chantada, Derek Barratt, Kathryn S Lilley
{"title":"Global Proteomics Indicates Subcellular-Specific Anti-Ferroptotic Responses to Ionizing Radiation.","authors":"Josie A Christopher, Lisa M Breckels, Oliver M Crook, Mercedes Vazquez-Chantada, Derek Barratt, Kathryn S Lilley","doi":"10.1016/j.mcpro.2024.100888","DOIUrl":null,"url":null,"abstract":"<p><p>Cells have many protective mechanisms against background levels of ionizing radiation orchestrated by molecular changes in expression, post-translational modifications, and subcellular localization. Radiotherapeutic treatment in oncology attempts to overwhelm such mechanisms, but radioresistance is an ongoing challenge. Here, global subcellular proteomics combined with Bayesian modeling identified 544 differentially localized proteins in A549 cells upon 6 Gy X-ray exposure, revealing subcellular-specific changes of proteins involved in ferroptosis, an iron-dependent cell death, suggestive of potential radioresistance mechanisms. These observations were independent of expression changes, emphasizing the utility of global subcellular proteomics and the promising prospect of ferroptosis-inducing therapies for combating radioresistance.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100888"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780130/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100888","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cells have many protective mechanisms against background levels of ionizing radiation orchestrated by molecular changes in expression, post-translational modifications, and subcellular localization. Radiotherapeutic treatment in oncology attempts to overwhelm such mechanisms, but radioresistance is an ongoing challenge. Here, global subcellular proteomics combined with Bayesian modeling identified 544 differentially localized proteins in A549 cells upon 6 Gy X-ray exposure, revealing subcellular-specific changes of proteins involved in ferroptosis, an iron-dependent cell death, suggestive of potential radioresistance mechanisms. These observations were independent of expression changes, emphasizing the utility of global subcellular proteomics and the promising prospect of ferroptosis-inducing therapies for combating radioresistance.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes