Intracranial aneurysm instability prediction model based on 4D-Flow MRI and HR-MRI.

IF 5.6 2区 医学 Q1 CLINICAL NEUROLOGY Neurotherapeutics Pub Date : 2024-11-30 DOI:10.1016/j.neurot.2024.e00505
Fei Peng, Jiaxiang Xia, Fandong Zhang, Shiyu Lu, Hao Wang, Jiashu Li, Xinmin Liu, Yao Zhong, Jiahuan Guo, Yonghong Duan, Binbin Sui, Chuyang Ye, Yi Ju, Shuai Kang, Yizhou Yu, Xin Feng, Xingquan Zhao, Rui Li, Aihua Liu
{"title":"Intracranial aneurysm instability prediction model based on 4D-Flow MRI and HR-MRI.","authors":"Fei Peng, Jiaxiang Xia, Fandong Zhang, Shiyu Lu, Hao Wang, Jiashu Li, Xinmin Liu, Yao Zhong, Jiahuan Guo, Yonghong Duan, Binbin Sui, Chuyang Ye, Yi Ju, Shuai Kang, Yizhou Yu, Xin Feng, Xingquan Zhao, Rui Li, Aihua Liu","doi":"10.1016/j.neurot.2024.e00505","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop a reliable predictive model for assessing intracranial aneurysm (IA) instability by utilizing four-dimensional flow magnetic resonance imaging (4D-Flow MRI) and high-resolution MRI (HR-MRI). Initially, we curated a prospective dataset, dubbed the primary cohort, by aggregating patient data that was consecutively enrolled across two centers from November 2018 to November 2021. Unstable aneurysms were defined as those with symptoms, morphological change or ruptured during follow-up periods. We introduce a specialized ensemble learning framework, termed the Hybrid Model, which synergistically combines two heterogeneous base learning algorithms: 4D-Flow logistic regression (4D-Flow-LR) and Multi-crop Attention Branch Network (MicroAB-Net). The ability of the hybrid model to predict aneurysm instability was compared with baseline models: PHASES (population, hypertension, age, size, earlier rupture, and site) LR, ELAPSS (earlier subarachnoid hemorrhage, location, age, population, size, and shape) LR, aneurysm wall enhancement (AWE) LR, and Radiomics using the area under the curve (AUC) with Delong's test. Finally, the Hybrid Model was further validated in the validation cohort (patients enrolled between December 2021 to May 2022). In the primary cohort, 189 patients (144 women [76.2 ​%]; aged 58.90 years ​± ​10.32) with 213 IAs were included. In the validation cohort, 48 patients (35 women [72.9 ​%]; aged 55.0 years ​± ​10.77) with 53 IAs were included. The Hybrid Model achieved the highest performance both in the primary cohort (AUC ​= ​0.854) and the validation cohort (AUC ​= ​0.876). The Hybrid model provided a promising prediction of aneurysm instability.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00505"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neurot.2024.e00505","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to develop a reliable predictive model for assessing intracranial aneurysm (IA) instability by utilizing four-dimensional flow magnetic resonance imaging (4D-Flow MRI) and high-resolution MRI (HR-MRI). Initially, we curated a prospective dataset, dubbed the primary cohort, by aggregating patient data that was consecutively enrolled across two centers from November 2018 to November 2021. Unstable aneurysms were defined as those with symptoms, morphological change or ruptured during follow-up periods. We introduce a specialized ensemble learning framework, termed the Hybrid Model, which synergistically combines two heterogeneous base learning algorithms: 4D-Flow logistic regression (4D-Flow-LR) and Multi-crop Attention Branch Network (MicroAB-Net). The ability of the hybrid model to predict aneurysm instability was compared with baseline models: PHASES (population, hypertension, age, size, earlier rupture, and site) LR, ELAPSS (earlier subarachnoid hemorrhage, location, age, population, size, and shape) LR, aneurysm wall enhancement (AWE) LR, and Radiomics using the area under the curve (AUC) with Delong's test. Finally, the Hybrid Model was further validated in the validation cohort (patients enrolled between December 2021 to May 2022). In the primary cohort, 189 patients (144 women [76.2 ​%]; aged 58.90 years ​± ​10.32) with 213 IAs were included. In the validation cohort, 48 patients (35 women [72.9 ​%]; aged 55.0 years ​± ​10.77) with 53 IAs were included. The Hybrid Model achieved the highest performance both in the primary cohort (AUC ​= ​0.854) and the validation cohort (AUC ​= ​0.876). The Hybrid model provided a promising prediction of aneurysm instability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurotherapeutics
Neurotherapeutics 医学-神经科学
CiteScore
11.00
自引率
3.50%
发文量
154
审稿时长
6-12 weeks
期刊介绍: Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities. The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field. Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.
期刊最新文献
Clavulanic acid prevents paclitaxel-induced neuropathic pain through a systemic and central anti-inflammatory effect in mice. Graft ischemia post cell transplantation to the brain: Glucose deprivation as the primary driver of rapid cell death. Inducers and modulators of protein aggregation in Alzheimer's disease - Critical tools for understanding the foundations of aggregate structures. Delayed atorvastatin delivery promotes recovery after experimental spinal cord injury. Evolving concepts in intracranial pressure monitoring - from traditional monitoring to precision medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1