Biokinetics of carbon black, multi-walled carbon nanotubes, cerium oxide, silica, and titanium dioxide nanoparticles after inhalation: a review.

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY Nanotoxicology Pub Date : 2024-12-01 Epub Date: 2024-12-04 DOI:10.1080/17435390.2024.2431242
Niels Hadrup, Ulla Vogel, Nicklas R Jacobsen
{"title":"Biokinetics of carbon black, multi-walled carbon nanotubes, cerium oxide, silica, and titanium dioxide nanoparticles after inhalation: a review.","authors":"Niels Hadrup, Ulla Vogel, Nicklas R Jacobsen","doi":"10.1080/17435390.2024.2431242","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the biokinetics of nanoparticles will support the identification of target organs for toxicological endpoints. We investigated the biokinetics of poorly soluble nanomaterials carbon black, multi-walled carbon nanotubes (MWCNT), cerium oxide (CeO<sub>2</sub>), titanium dioxide (TiO<sub>2</sub>), crystalline silica (SiO<sub>2</sub>) in inhalation studies in rodents (the soluble amorphous silica was also included). By reviewing research papers on the inhalation of these substances, we collected physico-chemical data and elemental distribution to organs, urine, and feces. Carbon black, MWCNT, cerium, and titanium accumulated during exposure and persisted in the lung post-exposure (still present at >3000 h). For silica, the amorphous form resulted in silicon accumulation in the lungs. Silicon was increased in the blood. Lymph node accumulation was observed for MWCNT, cerium, and titanium. Liver accumulation was observed for cerium and titanium. Cerium and silicon were increased in the spleen. Titanium accumulated and remained in the spleen (>4000 h). MWCNT were increased in several organs, some of which had a persistent presence of this material. In conclusion, we collected data on the biodistribution of five nanomaterials that, except for amorphous silica, are poorly soluble. The poorly soluble materials or their elements were persistent in the lungs but also showed persistence in other organs. In addition, the data on lung content supports Haber's rule, with titanium being deposited to a greater extent at exposure end than the other materials. Lung deposition seems relatively linear for the collected MMAD values, indicating size may be less important than previously suggested regarding alveolar deposition of the sub-2-micrometer size.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"678-706"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2431242","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the biokinetics of nanoparticles will support the identification of target organs for toxicological endpoints. We investigated the biokinetics of poorly soluble nanomaterials carbon black, multi-walled carbon nanotubes (MWCNT), cerium oxide (CeO2), titanium dioxide (TiO2), crystalline silica (SiO2) in inhalation studies in rodents (the soluble amorphous silica was also included). By reviewing research papers on the inhalation of these substances, we collected physico-chemical data and elemental distribution to organs, urine, and feces. Carbon black, MWCNT, cerium, and titanium accumulated during exposure and persisted in the lung post-exposure (still present at >3000 h). For silica, the amorphous form resulted in silicon accumulation in the lungs. Silicon was increased in the blood. Lymph node accumulation was observed for MWCNT, cerium, and titanium. Liver accumulation was observed for cerium and titanium. Cerium and silicon were increased in the spleen. Titanium accumulated and remained in the spleen (>4000 h). MWCNT were increased in several organs, some of which had a persistent presence of this material. In conclusion, we collected data on the biodistribution of five nanomaterials that, except for amorphous silica, are poorly soluble. The poorly soluble materials or their elements were persistent in the lungs but also showed persistence in other organs. In addition, the data on lung content supports Haber's rule, with titanium being deposited to a greater extent at exposure end than the other materials. Lung deposition seems relatively linear for the collected MMAD values, indicating size may be less important than previously suggested regarding alveolar deposition of the sub-2-micrometer size.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
炭黑、多壁碳纳米管、氧化铈、二氧化硅和二氧化钛纳米颗粒吸入后的生物动力学综述。
了解纳米颗粒的生物动力学将有助于确定毒理学终点的靶器官。我们在啮齿类动物的吸入研究中研究了难溶性纳米材料炭黑、多壁碳纳米管(MWCNT)、氧化铈(CeO2)、二氧化钛(TiO2)、结晶二氧化硅(SiO2)的生物动力学(可溶性无定形二氧化硅也包括在内)。通过回顾吸入这些物质的研究论文,我们收集了这些物质在器官、尿液和粪便中的物理化学数据和元素分布。炭黑、MWCNT、铈和钛在暴露过程中积累,并在暴露后持续存在于肺部(在bb0 3000h时仍存在)。对于二氧化硅,无定形导致硅在肺部积聚。血液中的硅含量增加了。MWCNT、铈和钛均可见淋巴结积聚。在肝脏中观察到铈和钛的蓄积。脾脏中铈、硅含量升高。钛在脾脏积聚并滞留(bbb40 000 h)。MWCNT在几个器官中增加,其中一些器官持续存在这种物质。总之,我们收集了五种纳米材料的生物分布数据,这些材料除了无定形二氧化硅外,都是难溶的。这些难溶性物质或其成分在肺中持续存在,但也在其他器官中持续存在。此外,肺内容物的数据支持Haber规则,钛在暴露端沉积的程度大于其他材料。肺沉积似乎与所收集的MMAD值相对呈线性关系,这表明对于小于2微米大小的肺泡沉积,大小可能没有先前认为的那么重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
期刊最新文献
Knock-out mouse models and single particle ICP-MS reveal that SP-D and SP-A deficiency reduces agglomeration of inhaled gold nanoparticles in vivo without significant changes to overall lung clearance. Evaluation of anticancer activity of urotropine surface modified iron oxide nanoparticles using a panel of forty breast cancer cell lines. Plastic nanoparticle toxicity is accentuated in the immune-competent inflamed intestinal tri-culture cell model. Probing the effects of dextran-coated CeO2 nanoparticles on lung fibroblasts using multivariate single-cell Raman spectroscopy. Toxicological impact of silver nanoparticles on soil microbial indicators in contaminated soil (pot experiment).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1